Skip to main content

Advertisement

Log in

Molecular chaperone Jiv promotes the RNA replication of classical swine fever virus

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The nonstructural protein 2 (NS2) of classical swine fever virus (CSFV) is a self-splicing ribozyme wherein the precursor protein NS2-3 is cleaved, and the cleavage efficiency of NS2-3 is crucial to the replication of viral RNA. However, the proteolytic activity of NS2 autoprotease may be achieved through a cellular chaperone called J-domain protein interacting with viral protein (Jiv) or its fragment Jiv90, as evidence suggests that Jiv is required for the proper functioning of the NS2 protein of bovine viral diarrhea virus. Hence, the expression of Jiv may be correlated with the replication efficiency of CSFV RNA. We investigated the expression levels of Jiv and viral RNA in CSFV-infected cells and tissues using Real-time RT-PCR or Western blot analysis. The obtained results show that Jiv90 possibly plays an important role in the lifecycle of CSFV because the distribution of Jiv90 protein shows a positive correlation with the viral load of CSFV. Furthermore, the overexpression or knockdown of Jiv90 in swine cells can also significantly promote or decrease the viral load, respectively. The detection of Flow cytometry shows that the overexpression of Jiv90 prolongs the G1 phase of cell cycles but has no effect on apoptosis. These findings are likely to be of benefit in clarifying the pathogenesis of the CSFV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Q. Tang, K. Guo, K. Kang, Y. Zhang, L. He, J. Wang, Classical swine fever virus NS2 protein promotes interleukin-8 expression and inhibits MG132-induced apoptosis. Virus Genes 42, 355–362 (2011)

    Article  CAS  PubMed  Google Scholar 

  2. Q.H. Tang, Y.M. Zhang, L. Fan, G. Tong, L. He, C. Dai, Classic swine fever virus NS2 protein leads to the induction of cell cycle arrest at S-phase and endoplasmic reticulum stress. Virol. J. 7, 4 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  3. L. Neckers, U. Tatu, Molecular chaperones in pathogen virulence: emerging new targets for therapy. Cell Host Microbe 4, 519–527 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. S. Zuniga, I. Sola, J.L. Cruz, L. Enjuanes, Role of RNA chaperones in virus replication. Virus Res. 139, 253–266 (2009)

    Article  CAS  PubMed  Google Scholar 

  5. A.W. McClurkin, S.R. Bolin, M.F. Coria, Isolation of cytopathic and noncytopathic bovine viral diarrhea virus from the spleen of cattle acutely and chronically affected with bovine viral diarrhea. J. Am. Vet. Med. Assoc. 186, 568–569 (1985)

    CAS  PubMed  Google Scholar 

  6. J.F. Ridpath, J.D. Neill, Detection and characterization of genetic recombination in cytopathic type 2 bovine viral diarrhea viruses. J. Virol. 74, 8771–8774 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. S. Vilcek, I. Greiser-Wilke, P. Nettleton, D.J. Paton, Cellular insertions in the NS2-3 genome region of cytopathic bovine viral diarrhoea virus (BVDV) isolates. Vet. Microbiol. 77, 129–136 (2000)

    Article  CAS  PubMed  Google Scholar 

  8. A. Muller, G. Rinck, H.J. Thiel, N. Tautz, Cell-derived sequences in the N-terminal region of the polyprotein of a cytopathogenic pestivirus. J. Virol. 77, 10663–10669 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Z. Yi, L. Sperzel, C. Nurnberger, P.J. Bredenbeek, K.J. Lubick, S.M. Best, C.T. Stoyanov, L.M. Law, Z. Yuan, C.M. Rice, M.R. MacDonald, Identification and characterization of the host protein DNAJC14 as a broadly active flavivirus replication modulator. PLoS Pathog 7, e1001255 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  10. Z. Yi, Z. Yuan, C.M. Rice, M.R. MacDonald, Flavivirus replication complex assembly revealed by DNAJC14 functional mapping. J. Virol. 86, 11815–11832 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. E.A. Gould, T. Solomon, Pathogenic flaviviruses. Lancet 371, 500–509 (2008)

    Article  CAS  PubMed  Google Scholar 

  12. A. Gallei, S. Blome, S. Gilgenbach, N. Tautz, V. Moennig, P. Becher, Cytopathogenicity of classical swine fever virus correlates with attenuation in the natural host. J. Virol. 82, 9717–9729 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. M. Xiao, Y. Bai, H. Xu, X. Geng, J. Chen, Y. Wang, J. Chen, B. Li, Effect of NS3 and NS5B proteins on classical swine fever virus internal ribosome entry site-mediated translation and its host cellular translation. J. Gen. Virol. 89, 994–999 (2008)

    Article  CAS  PubMed  Google Scholar 

  14. H. Aoki, Y. Sakoda, S. Nakamura, S. Suzuki, A. Fukusho, Cytopathogenicity of classical swine fever viruses that do not show the exaltation of Newcastle disease virus is associated with accumulation of NS3 in serum-free cultured cell lines. J. Vet. Med. Sci. 66, 161–167 (2004)

    Article  PubMed  Google Scholar 

  15. K. Kang, K. Guo, Q. Tang, Y. Zhang, J. Wu, W. Li, Z. Lin, Interactive cellular proteins related to classical swine fever virus non-structure protein 2 by yeast two-hybrid analysis. Mol. Biol. Rep. 39, 10515–10524 (2012)

    Article  CAS  PubMed  Google Scholar 

  16. G. Rinck, C. Birghan, T. Harada, G. Meyers, H.J. Thiel, N. Tautz, A cellular J-domain protein modulates polyprotein processing and cytopathogenicity of a pestivirus. J. Virol. 75, 9470–9482 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. T. Lackner, A. Muller, A. Pankraz, P. Becher, H.J. Thiel, A.E. Gorbalenya, N. Tautz, Temporal modulation of an autoprotease is crucial for replication and pathogenicity of an RNA virus. J. Virol. 78, 10765–10775 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. H.X. Hong, Y.M. Zhang, H. Xu, Z.Y. Su, P. Sun, Immortalization of swine umbilical vein endothelial cells with human telomerase reverse transcriptase. Mol. Cells 24, 358–363 (2007)

    CAS  PubMed  Google Scholar 

  19. W. Li, G. Wang, W. Liang, K. Kang, K. Guo, Y. Zhang, Integrin beta3 is required in infection and proliferation of classical swine fever virus. PLoS ONE 9, e110911 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  20. P. Ning, Y. Zhang, K. Guo, R. Chen, W. Liang, Z. Lin, H. Li, Discovering up-regulated VEGF-C expression in swine umbilical vein endothelial cells by classical swine fever virus Shimen. Vet. Res. 45, 48 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  21. S.B. Kleiboeker, Swine fever: classical swine fever and African swine fever. Vet. Clin. N. Am. Food Anim. Pract. 18, 431–451 (2002)

    Article  Google Scholar 

  22. V. Moennig, The control of classical swine fever in wild boar. Front. Microbiol. 6, 1211 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  23. J. Pei, M. Zhao, Z. Ye, H. Gou, J. Wang, L. Yi, X. Dong, W. Liu, Y. Luo, M. Liao, J. Chen, Autophagy enhances the replication of classical swine fever virus in vitro. Autophagy 10, 93–110 (2014)

    Article  CAS  PubMed  Google Scholar 

  24. A. Gallei, T. Rumenapf, H.J. Thiel, P. Becher, Characterization of helper virus-independent cytopathogenic classical swine fever virus generated by an in vivo RNA recombination system. J. Virol. 79, 2440–2448 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. G. Wen, J. Xue, Y. Shen, C. Zhang, Z. Pan, Characterization of classical swine fever virus (CSFV) nonstructural protein 3 (NS3) helicase activity and its modulation by CSFV RNA-dependent RNA polymerase. Virus Res. 141, 63–70 (2009)

    Article  CAS  PubMed  Google Scholar 

  26. P.C. Risager, U. Fahnoe, M. Gullberg, T.B. Rasmussen, G.J. Belsham, Analysis of classical swine fever virus RNA replication determinants using replicons. J. Gen. Virol. 94, 1739–1748 (2013)

    Article  CAS  PubMed  Google Scholar 

  27. T. Lackner, A. Muller, M. Konig, H.J. Thiel, N. Tautz, Persistence of bovine viral diarrhea virus is determined by a cellular cofactor of a viral autoprotease. J. Virol. 79, 9746–9755 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. H.R. Moulin, T. Seuberlich, O. Bauhofer, L.C. Bennett, J.D. Tratschin, M.A. Hofmann, N. Ruggli, Nonstructural proteins NS2-3 and NS4A of classical swine fever virus: essential features for infectious particle formation. Virology 365, 376–389 (2007)

    Article  CAS  PubMed  Google Scholar 

  29. B. Lamp, C. Riedel, E. Wentz, M.A. Tortorici, T. Rumenapf, Autocatalytic cleavage within classical swine fever virus NS3 leads to a functional separation of protease and helicase. J. Virol. 87, 11872–11883 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. E. Lattwein, O. Klemens, S. Schwindt, P. Becher, N. Tautz, Pestivirus virion morphogenesis in the absence of uncleaved nonstructural protein 2-3. J. Virol. 86, 427–437 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. E.V. Agapov, C.L. Murray, I. Frolov, L. Qu, T.M. Myers, C.M. Rice, Uncleaved NS2-3 is required for production of infectious bovine viral diarrhea virus. J. Virol. 78, 2414–2425 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. J.C. Gullett, F.S. Nolte, Quantitative nucleic acid amplification methods for viral infections. Clin. Chem. 61, 72–78 (2015)

    Article  CAS  PubMed  Google Scholar 

  33. E. Marchal, E.F. Hult, J. Huang, S.S. Tobe, Sequencing and validation of housekeeping genes for quantitative real-time PCR during the gonadotrophic cycle of Diploptera punctata. BMC Res. Notes 6, 237 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. A. Fey, S. Eichler, S. Flavier, R. Christen, M.G. Hofle, C.A. Guzman, Establishment of a real-time PCR-based approach for accurate quantification of bacterial RNA targets in water, using Salmonella as a model organism. Appl. Environ. Microbiol. 70, 3618–3623 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. J.F. Huggett, S. Cowen, C.A. Foy, Considerations for digital PCR as an accurate molecular diagnostic tool. Clin. Chem. 61, 79–88 (2015)

    Article  CAS  PubMed  Google Scholar 

  36. M. Alvarez, J. Donate, B. Makoschey, Antibody responses against non-structural protein 3 of bovine viral diarrhoea virus in milk and serum samples from animals immunised with an inactivated vaccine. Vet. J. 191, 371–376 (2012)

    Article  CAS  PubMed  Google Scholar 

  37. A. Alagia, R. Eritja, siRNA and RNAi optimization. Wiley Interdiscip. Rev. RNA 7, 316–329 (2016)

    Article  CAS  PubMed  Google Scholar 

  38. V. Schramke, R. Allshire, Those interfering little RNAs! Silencing and eliminating chromatin. Curr. Opin. Genet. Dev. 14, 174–180 (2004)

    Article  CAS  PubMed  Google Scholar 

  39. D.H. Spector, Human cytomegalovirus riding the cell cycle. Med. Microbiol. Immunol. 204, 409–419 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (Project No. 31472210) and the Yichang science and technology research and development projects in 2015 (A15-302-b01).

Author information

Authors and Affiliations

Authors

Contributions

This study was designed by Yanming Zhang and Kangkang Guo, and was performed by Haimin Li. The data were analyzed by Xuechao Tan, the manuscript was written by Qizhuang Lv. Mengmeng Wu, and Wei Liu revised the manuscript.

Corresponding author

Correspondence to Yanming Zhang.

Additional information

Edited by Juergen A Richt.

Kangkang Guo and Haimin Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, K., Li, H., Tan, X. et al. Molecular chaperone Jiv promotes the RNA replication of classical swine fever virus. Virus Genes 53, 426–433 (2017). https://doi.org/10.1007/s11262-017-1448-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-017-1448-9

Keywords

Navigation