Skip to main content

Advertisement

Log in

ORF005L from infectious spleen and kidney necrosis virus is located in the inner mitochondrial membrane and induces apoptosis

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Infectious spleen and kidney necrosis virus (ISKNV) belongs to the genus Megalocytivirus in the family Iridoviridae. This virus is the etiological agent of a serious and pandemic disease in fish. Cells infected with ISKNV undergo apoptosis. In this study, the ISKNV ORF005L gene was characterized and functionally investigated. Bioinformatics analysis revealed that the ORF005L protein contains a region similar to the catalytic domain of CTD-like phosphatases. Real-time quantitative-PCR results showed the transcription profile of ORF005L in ISKNV-infected cells; in these cells, ORF005L was initially transcribed at 24 h post-infection. The green fluorescent protein-tagged ORF005L protein was localized in the mitochondria. Sub-mitochondrial fractions were subjected to Western blot, and the results showed that ORF005L was specifically located in the inner membrane of the mitochondria. The ORF005L in fathead minnow cells was transiently expressed, resulting in the decrease in mitochondrial transmembrane potential, which induced cell apoptosis. ORF005L was knocked down by specific dsRNA, thereby significantly reducing the apoptosis of mandarin fish fry-1 cells induced by ISKNV infection. These results indicated that the ORF005L of ISKNV could disrupt mitochondrial function and cause apoptosis. This study may provide novel insights into the pathogenesis of Megalocytivirus infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.R. Green et al., Mitochondria and Apoptosis. Science 281(5381), 1309–1312 (1998)

    Article  PubMed  CAS  Google Scholar 

  2. R.J. Youle, A. Strasser, The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 9(1), 47–59 (2008)

    Article  PubMed  CAS  Google Scholar 

  3. G. Kroemer, L. Galluzzi, C. Brenner, Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87(1), 99–163 (2007)

    Article  PubMed  CAS  Google Scholar 

  4. M.O. Ripple, M. Abajian, R. Springett, Cytochrome c is rapidly reduced in the cytosol after mitochondrial outer membrane permeabilization. Apoptosis 15(5), 563–573 (2010)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. D. James et al., Mechanisms of mitochondrial outer membrane permeabilization. Novartis Found Symp. 287, 170–176 (2007). Discussion 176–182

    Article  PubMed  CAS  Google Scholar 

  6. J.J. Lemasters et al., Role of mitochondrial inner membrane permeabilization in necrotic cell death, apoptosis, and autophagy. Antioxid. Redox Signal. 4(5), 769–781 (2002)

    Article  PubMed  CAS  Google Scholar 

  7. J.E. McLean et al., Lack of Bax prevents influenza A virus-induced apoptosis and causes diminished viral replication. J. Virol. 83(16), 8233–8246 (2009)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. J.R. Hong, J.L. Wu, Induction of apoptotic death in cells via Bad gene expression by infectious pancreatic necrosis virus infection. Cell Death Differ. 9(2), 113–124 (2002)

    Article  PubMed  CAS  Google Scholar 

  9. M.J. Vanden Oever, J.Y. Han, Caspase 9 is essential for herpes simplex virus type 2-induced apoptosis in T cells. J. Virol. 84(6), 3116–3120 (2010)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. J.G. Teodoro, P.E. Branton, Regulation of apoptosis by viral gene products. J. Virol. 71(3), 1739–1746 (1997)

    PubMed  CAS  PubMed Central  Google Scholar 

  11. V. O’Brien, Viruses and apoptosis. J. Gen. Virol. 79(Pt 8), 1833–1845 (1998)

    PubMed  Google Scholar 

  12. T. Williams, The iridoviruses. Adv. Virus Res. 46, 345–412 (1996)

    Article  PubMed  CAS  Google Scholar 

  13. J. Kurita, K. Nakajima, Megalocytiviruses. Viruses 4(4), 521–538 (2012)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Y.Q. Wang et al., Molecular epidemiology and phylogenetic analysis of a marine fish infectious spleen and kidney necrosis virus-like (ISKNV-like) virus. Arch. Virol. 152(4), 763–773 (2007)

    Article  PubMed  CAS  Google Scholar 

  15. X. Xu et al., A zebrafish (Danio rerio) model of infectious spleen and kidney necrosis virus (ISKNV) infection. Virology 376(1), 1–12 (2008)

    Article  PubMed  CAS  Google Scholar 

  16. X. Xu et al., Tetraodon nigroviridis as a nonlethal model of infectious spleen and kidney necrosis virus (ISKNV) infection. Virology 406(2), 167–175 (2010)

    Article  PubMed  CAS  Google Scholar 

  17. C.F. Dong et al., Global landscape of structural proteins of infectious spleen and kidney necrosis virus. J. Virol. 85(6), 2869–2877 (2011)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. J.G. He et al., Complete genome analysis of the mandarin fish infectious spleen and kidney necrosis iridovirus. Virology 291(1), 126–139 (2001)

    Article  PubMed  CAS  Google Scholar 

  19. C. Dong et al., Development of a mandarin fish Siniperca chuatsi fry cell line suitable for the study of infectious spleen and kidney necrosis virus (ISKNV). Virus Res. 135(2), 273–281 (2008)

    Article  PubMed  CAS  Google Scholar 

  20. F. Sievers et al., Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  21. X. Xu et al., VP15R from infectious spleen and kidney necrosis virus is a non-muscle myosin-II-binding protein. Arch. Virol. 156(1), 53–61 (2011)

    Article  PubMed  CAS  Google Scholar 

  22. M.B. Genter et al., Comparison of mouse hepatic mitochondrial versus microsomal cytochromes P450 following TCDD treatment. Biochem. Biophys. Res. Commun. 342(4), 1375–1381 (2006)

    Article  PubMed  CAS  Google Scholar 

  23. C.Y. Shi et al., Complete genome sequence of a Megalocytivirus (family Iridoviridae) associated with turbot mortality in China. Virol. J. 7, 159 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  24. J.W. Do et al., Complete genomic DNA sequence of rock bream iridovirus. Virology 325(2), 351–363 (2004)

    Article  PubMed  CAS  Google Scholar 

  25. Q.Y. Zhang et al., Complete genome sequence of lymphocystis disease virus isolated from China. J. Virol. 78(13), 6982–6994 (2004)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. C.A. Tidona, G. Darai, The complete DNA sequence of lymphocystis disease virus. Virology 230(2), 207–216 (1997)

    Article  PubMed  CAS  Google Scholar 

  27. J.G. He et al., Sequence analysis of the complete genome of an iridovirus isolated from the tiger frog. Virology 292(2), 185–197 (2002)

    Article  PubMed  CAS  Google Scholar 

  28. N.J. Jakob et al., Analysis of the first complete DNA sequence of an invertebrate iridovirus: coding strategy of the genome of Chilo iridescent virus. Virology 286(1), 182–196 (2001)

    Article  PubMed  CAS  Google Scholar 

  29. S.W. Perry et al., Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 50(2), 98–115 (2011)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. P. Boya, B. Roques, G. Kroemer, New EMBO members’ review: viral and bacterial proteins regulating apoptosis at the mitochondrial level. EMBO J. 20(16), 4325–4331 (2001)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. D. Poncet et al., An anti-apoptotic viral protein that recruits Bax to mitochondria. J. Biol. Chem. 279(21), 22605–22614 (2004)

    Article  PubMed  CAS  Google Scholar 

  32. D. Arnoult et al., Cytomegalovirus cell death suppressor vMIA blocks Bax- but not Bak-mediated apoptosis by binding and sequestering Bax at mitochondria. Proc. Natl. Acad. Sci. USA 101(21), 7988–7993 (2004)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Z. Rahmani et al., Hepatitis B virus X protein colocalizes to mitochondria with a human voltage-dependent anion channel, HVDAC3, and alters its transmembrane potential. J. Virol. 74(6), 2840–2846 (2000)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Y. Shirakata, K. Koike, Hepatitis B virus X protein induces cell death by causing loss of mitochondrial membrane potential. J. Biol. Chem. 278(24), 22071–22078 (2003)

    Article  PubMed  CAS  Google Scholar 

  35. J.S. Gibbs et al., The influenza A virus PB1-F2 protein targets the inner mitochondrial membrane via a predicted basic amphipathic helix that disrupts mitochondrial function. J. Virol. 77(13), 7214–7224 (2003)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. B.L. He et al., The viral TRAF protein (ORF111L) from infectious spleen and kidney necrosis virus interacts with TRADD and induces caspase 8-mediated apoptosis. PLoS One 7(5), e37001 (2012)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Y. Tan et al., Proteomic analysis of the Spodoptera frugiperda ascovirus 1a virion reveals 21 proteins. J. Gen. Virol. 90(Pt 2), 359–365 (2009)

    Article  PubMed  CAS  Google Scholar 

  38. A. Meinhart et al., A structural perspective of CTD function. Genes Dev. 19(12), 1401–1415 (2005)

    Article  PubMed  CAS  Google Scholar 

  39. T. Doerks et al., Systematic identification of novel protein domain families associated with nuclear functions. Genome Res. 12(1), 47–56 (2002)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Science Foundation of China (Grant No. 31330080), the National Basic Research Program of China (973 Program; Grant No. 2012CB114402),the National Natural Science Foundation of China (Young-General Continuous Support Program; Grant No. 31270048), the National Natural Science Foundation for Young Scholars (Grant No. 30901114), the China Postdoctoral Science Special Foundation (Grant No. 201003369), and the Fundamental Research Funds for the Central Universities (Grant No. 11lgpy24).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianguo He or Xiaopeng Xu.

Additional information

Rui Wang and Yang Li have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Multiple sequence alignment (using Clustal Omega software) of the ISKNV ORF005L protein and its homologs from other iridoviruses. The identical amino acid residues were shaded in black and the similar residues in gray. Proteins analyzed list below: ISKNV ORF005L (Genbank Accession No. NP_612227); Red seabream iridovirus (RSIV) ORF385R (Accession No. BAK14278); Turbot reddish body iridovirus (TRBIV) ORF5 (Accession No. ADE34350); Rock bream iridovirus (RBIV) ORF006L (Accession No. AAT71821); Lymphocystis disease virus-isolate China (LCDV-C) ORF147 (Accession No. YP_073653); Lymphocystis disease virus-1 (LCDV-1) ORF64 (Accession No. NP_078678); Tiger frog virus (TFV) ORF040R (Accession No. ABB92302); and Invertebrate iridescent virus 6 (IIV-6) ORF355R (Accession No. NP_149818). Supplementary material 1 (TIFF 5643 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Yi, Y., Liu, L. et al. ORF005L from infectious spleen and kidney necrosis virus is located in the inner mitochondrial membrane and induces apoptosis. Virus Genes 49, 269–277 (2014). https://doi.org/10.1007/s11262-014-1088-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-014-1088-2

Keywords

Navigation