Skip to main content
Log in

Effects of fire and edges on plant litterfall in a Neotropical rainforest, Brazil

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Anthropogenic forest fires are occurring with increasing frequency in tropical forests, with negative consequences for a variety of ecological processes, including litterfall. Litterfall provides several ecosystem services, such as nutrient cycling and carbon storage, thus playing an important role in ecosystem functioning. We assessed the impacts of fire and fire-created edges on litterfall in Atlantic Forest remnants in Bahia, Brazil. Litterfall was assessed at monthly intervals over one year along seven 300 m-long transects placed perpendicular to the edge between the unburnt forest and the burnt forest. We installed litterfall traps at the edge (0 m) and 20, 40, 60, 80, 100 and 150 m into both the burnt and unburnt forest. The total litterfall was smaller in the burnt forest (mean of 2.5 ± 2.2 SD t.ha−1.y−1) than in the unburnt forest (mean of 5.9 ± 3.4 SD t.ha−1.y−1). In addition, leaf litter gradually increased from the edge toward the unburnt forest interior. Our results highlight that there is less litterfall in the burnt forest, and that the relative contribution of different litter types (leaves, twigs, and miscellaneous litter) differ between burnt forest and unburnt forest. The lower amount of litterfall in the burnt forest and forest edge may have negative consequences for the natural regeneration of these areas, as the ecosystem services provided by plant litter that are important for forest regeneration are likely to be impaired.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable

References

  • Alves LF, Vieira SA, Scaranello MA, Camargo PB, Santos FAMC, Joly A, Martinelli LA (2010) Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). For Ecol Manag 260:679–691

    Article  Google Scholar 

  • Amatangelo KL, Dukes JS, Field CB (2008) Responses of a California annual grassland to litter manipulation. J Veg Scienc 19:605–612

    Article  Google Scholar 

  • An JY, Han SH, Youn WB, Lee SI, Rahman A, Dao HTT, Seo JM, Aung A, Choi H, Hyun HJ and Park BB (2019) Comparison of litterfall production in three forest types in Jeju Island, South Korea J of For Resear 1993–0607.

  • Andela N, Morton D, Giglio L, Chen Y, Werf G, Kasibhatla P et al (2017) A human-driven decline in global burned area. Science 356:1356–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrade D (2021) Persistent fire effect on forest dynamics and species composition of an old-growth tropical forest. Forest Systems 30:e009–e009

    Article  Google Scholar 

  • Aragão LEOC, Malhi Y, Metcalfe DB, Silva-Espejo JE, Jiménez E, Navarrete D, Almeida S, Costa ACL, Salinas N, Phillips OL, Anderson LO, Alvarez E, Baker TR, Goncalvez PH, Huamán-Ovalle J, Mamani-Solórzano M, Meir P, Monteagudo A, Patiño S, Peñuela MC, Prieto A, Quesada CA, Rozas-Dávila A, Rudas A, Silva JA Jr, Vásquez R (2009) Above-and below-ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeos 6(12):2759–2778

    Article  Google Scholar 

  • Aragão LEOC, Anderson LO, Fonseca MG, Rosan TM, Vedovato LB, Wagner FH, Silva CVJ, Silva Junior CHL, Arai E, Aguiar AP, Barlow J, Berenguer E, Deeter MN, Domingues LG, Gatti L, Gloor M, Malhi Y, Marengo JA, Miller JB, Phillips OL, Saatchi S (2018) 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat Commun 9:536

    Article  PubMed  PubMed Central  Google Scholar 

  • Arévalo JR, Delgado JD, Fernández-Palacios JM (2008) Changes in plant species composition and litter production in response to roads and trails in the laurel forest of Tenerife (Canary Islands). Plant Bios 142:614–622

    Article  Google Scholar 

  • Armenteras D, González TM, Retana J (2013) Forest fragmentation and edge influence on fire occurrence and intensity under different management types in Amazon forests. Biol Conserv 159:73–79

    Article  Google Scholar 

  • Armenteras D, Meza MC, González TM, Oliveras I, Balch JK, Retana J (2021) Fire threatens the diversity and structure of tropical gallery forests. Ecosphere 12(1):e03347

    Article  Google Scholar 

  • Arroyo-Rodriguez V, Saldaña-Vázquez RA, Fahrig L, Santos BA (2017) Does forest fragmentation cause an increase in forest temperature? Ecol Restor 32:81–88

    Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Barlow J, Peres CA (2014) Ecological responses to El Niño-induces surface fires in central Brazilian Amazonia: management implications for flammable tropical forests. Phil Trans R Soc Lond B 359:367–380

    Article  Google Scholar 

  • Barlow J, Gardner TA, Ferreira LV, Peres CA (2007) Litter fall and decomposition in primary, secondary and plantation forests in the Brazilian Amazon. For Ecol Manag 247:91–97

    Article  Google Scholar 

  • Bolker B, R Development core team 2022 bbmle: tools for general maximum likelihood estimation. R package version 1.0.25, <https://CRAN.R-project.org/package=bbmle>.

  • Bond WJ, Keeley JE (2005) Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20:387–394

    Article  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2004) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer-Verlag, New York

    Book  Google Scholar 

  • Camargo M, Giarrizzo T, Jesus AJS (2015) Effect of seasonal flooding cycle on litterfall production in alluvial rainforest on the middle Xingu River (Amazon basin, Brazil). Braz J Biol 75:250–256

    Article  CAS  PubMed  Google Scholar 

  • Carvalho L, Massi K, Coutinho M, Magalhães V (2022) Fire effects on Atlantic forest sites from a composition, structure and functional perspective. Braz J Biol 82:1–11

    Article  Google Scholar 

  • Celentano D, Zahawi RA, Finegan B, Ostertag R, Cole RJ, Holl KD (2011) Litterfall dynamics under different tropical forest restoration strategies in costa rica. Biot 43:279–287

    Google Scholar 

  • Chabrerie O, Jamoneau A, Gallet-Moron E, Decocq G (2013) Maturation of forest edges is constrained by neighbouring agricultural land management. J Veg Scienc 24:58–69

    Article  Google Scholar 

  • S Chakravarty P Rai NA Vineeta Pala and G Shukla 2019 Litter production and decomposition in tropical forest.

  • Chave J, Navarrete D, Almeida S, Álvarez E, Aragão LE, Malhi Y (2010a) Regional and seasonal patterns of litterfall in tropical South America. Biogeosc 7:43–55

    Article  Google Scholar 

  • Christensen NL (1977) Fire and soil-plant nutrient relations in a pine-wiregrass savanna on the coastal plain of North Carolina. Oecol 31:27–44

    Article  Google Scholar 

  • Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J, Holland EA (2001) Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecol Applic 11(2):371–384

    Article  Google Scholar 

  • Cleary DFR, Priadjati A (2005) Vegetation responses to burning in a rain forest in Borneo. Plant Ecol 117:145–163

    Article  Google Scholar 

  • Cochrane M, Skole DL, Matricardi EAT, Barber C, Chomentowski WH (2004) Selective logging, forest fragmentation, and fire disturbance. In: Zarin DJ, Alavalapati JRR, Putz FE, Schmink M (eds) Working forests in the neotropics: conservation through sustainable management? Columbia University Press, New York, pp 310–324

    Chapter  Google Scholar 

  • Cornwell WK, Cornlissen JHC, Amatangelo K, Dorrrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Let 11:1065–1071

    Article  Google Scholar 

  • Chave J, Navarrete D, Almeida S, Álvarez E, Aragão LE, Bonal D, Châtelet P, Silva-Espejo JE, Goret JY, Hildebrand P, Jiménez E, Patiño S, Peñuela MC, Phillips OL, Stevenson P, Malhi Y (2010b) Regional and seasonal patterns of litterfall in tropical South America. Biogeos 7(1):43–55

    Article  Google Scholar 

  • Chen X, Chen HYH (2018) Global effects of plant litter alterations on soil CO2 to the atmosphere. Glob Chang Biol 24:3462–3471

    Article  PubMed  Google Scholar 

  • Chen L, Zan Q, Li M, Shen J, Liao W (2009) Litter dynamics and forest structure of the introduced sonneratia caseolaris mangrove forest in shenzhen, China. Est, Coast and Shelf Scie 85:241–246

    Article  Google Scholar 

  • Dale SE, Turner BL, Bardgett RD (2015) Isolating the effects of precipitation, soil conditions, and litter quality on leaf litter decomposition in lowland tropical forests. Plant Soil 394:1–2. https://doi.org/10.1007/s11104-015-2511-8

    Article  CAS  Google Scholar 

  • DeBano LF (1991) The effect of fire on soil properties. Proceedings—management product. West. Mont. For. Soils. Gen. Tech. Rep. INT-GTR-280. Ogden, UT US Dep. Agric. For. Serv. Intermt. Res. Stn.

  • Delgado JD, Morales GM, Arroyo NL, Fernández-Palacios JM (2013) The responses of leaf litter invertebrates to environmental gradients along road edges in subtropical island forests. Pedobiologia 56:137–146

    Article  Google Scholar 

  • Dent DH, Bagchi R, Robinson D et al (2006) Nutrient fluxes via litterfall and leaf litter decomposition vary across a gradient of soil nutrient supply in a lowland tropical rain forest. Plant Soil 288:197–215

    Article  CAS  Google Scholar 

  • Didham RK, Lawton JH (1999) Edge structure determines the magnitude of changes in microclimate and vegetation structure in tropical forest fragments. Biot 31:17–30

    Google Scholar 

  • Dodonov P, Xavier RO, Tiberio FCS, Lucena IC, Zanelli CB, Silva-Matos DM (2014) Driving factors of of small-scale variability in a savanna plant population after a fire. Acta Oecologia 56:47–55

    Article  Google Scholar 

  • Dodonov P, Braga AL, Harper KA, Silva-Matos DM (2017) Edge influence on plant litter biomass in forest and savanna in the Brazilian cerrado. Aust Ecol 42:187–197

    Article  Google Scholar 

  • Dodonov P, Menezes GSC, Caitano B, Cazetta E, Mielke MS (2019) Air and soil temperature across fire-created edges in a Neotropical rainforest. Agricult and for Meteor 107606:176–277

    Google Scholar 

  • Driscoll DA, Armenteras D, Bennett A, Brotons L, Clarke MF, Doherty TS, Haslem A, Kelly LT, Sato CF, Sitters H, Aquilué N, Bell K, Chadid M, Duane A, Meza-Elizalde MC, Giljohann KM, González TM, Jambhekar R, Lazzari J, Morán-Ordóñez A, Wevill T (2021) How fire interacts with habitat loss and fragmentation. Biol Rev 96:976–998

    Article  PubMed  Google Scholar 

  • Dupuy JM, Chazdon RL (2008) Interacting effects of canopy gap, understory vegetation and leaf litter on tree seedling recruitment and composition in tropical secondary forests. For Ecol Manag 255:3716–3725

    Article  Google Scholar 

  • Faria D, Laps RR, Baumgarten J, Cetra M (2006) Bat and bird assemblages from forests and shade cacao plantations in two contrasting landscapes in the Atlantic rainforest of Southern Bahia, Brazil. Biodiv Conserv 15:587–612

    Article  Google Scholar 

  • Facelli JM, Pickett STA (1991) Plant litter: its dynamics and effects on plant community structure. Bot Rev 57:1–32

    Article  Google Scholar 

  • Ferreira IJ, Campanharo WA, Barbosa ML, Silva SSD, Selaya G, Aragão LE, Anderson LO (2023) Assessment of fire hazard in Southwestern Amazon. Frontiers in Forests and Global Change 6:1107417

    Article  Google Scholar 

  • Flannigan MD, Stocks BJ, Wotton BM (2000) Climate change and forest fires. Sci Total Environ 262(3):221–229

    Article  CAS  PubMed  Google Scholar 

  • Fonseca MG, Anderson LO, Arai E, Shimabukuro YE, Xaud HA, Xaud MR, Madani M, Wagner FH, Aragão LE (2017) Climatic and anthropogenic drivers of Northern Amazon fires during the 2015–2016 El Niño event. Ecol Applic 27(8):2514–2527

    Article  Google Scholar 

  • Franklin CMA, Harper KA, Clarke MJ (2021) Trends in studies of edge influence on vegetation at human-created and natural forest edges across time and space. Can J for Res 51:274–282

    Article  Google Scholar 

  • Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hattenschwiler S (2010) Diversity meets decomposition. Trends Ecol Evol 1230:9

    Google Scholar 

  • Giweta M (2020) Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: a review. J Ecol Environ 44:11

    Article  Google Scholar 

  • Granzow de la Cerda Í, Lloret F, Ruiz JE, Vandermeer JH (2012) Tree mortality following ENSO-associated fires and drought in lowland rain forests of Eastern Nicaragua. For Ecol Manag 265:248–257

    Article  Google Scholar 

  • Guariguata MR, Ostertag R (2001) Neotropical secondary forest succession: changes in structural and functional characteristics. For Ecol Manag 148(1–3):185–206

    Article  Google Scholar 

  • Guo Y, Chen HYH, Mallik AU, Wang B, Li D, Xiang W, Li W (2019) Predominance of abiotic drivers in the relationship between species diversity and litterfall production in a tropical karst seasonal rainforest. For Ecol Manag 449:117452

    Article  Google Scholar 

  • Harper KA, Lesieur D, Bergeron Y, Drapeau P (2004) Forest structure and composition at young fire and cut edges in black spruce boreal forest. Canad J for Res 34:289–302

    Article  Google Scholar 

  • Harper KA, Macdonald SE, Burton PJ, Chen J, Brosofske KD, Saunders SC, Esseen PA (2005) Edge influence on forest structure and composition in fragmented landscapes. Conserv Biol 19:768–782

    Article  Google Scholar 

  • Harper KA, Drapeau P, Lesieur D, Bergeron Y (2014) Forest structure and composition at fire edges of different ages: evidence of persistent structural features on the landscape. For Ecol and Manag 314:131–140

    Article  Google Scholar 

  • Heim RJ, Heim W, Darman GF, Heinken T, Smirenski SM, Holzel N (2021) Litter removal through fire—a key process for wetland vegetation and ecosystem dynamics. Scien of the Tot Environm 755:142659

    Article  CAS  Google Scholar 

  • Herbohn J, Congdon R (1993) Ecosystem dynamics at disturbed and undisturbed sites in north queensland wet tropical rain forest. II Litterfall J Tropic Ecol 9(3):365–380

    Article  Google Scholar 

  • Jhariya MK (2017) Influences of forest fire on forest floor and litterfall in Bhoramdeo wildlife sanctuary (C.G.). India J Forest Environ Sci 33:330–341

    Google Scholar 

  • Kaewsong K, Johnson DJ, Bunyavejchewin S, Baker PJ (2022) Fire impacts on recruitment dynamics in a seasonal tropical forest in continental Southeast Asia. Forests 13(1):116

    Article  Google Scholar 

  • Kuruvilla T, Jijeesh CM, Seethalakshm KK (2016) Litter production and decomposition dynamics of a rare and endemic bamboo species munrochloa ritcheyi of Western Ghats, India. Trop Ecol 57:601–606

    Google Scholar 

  • Laurance WF, Laurance SG, Ferreira LV, Rankin-de Merona JM, Gascon C, Lovejoy TM (1997) Biomass collapse in Amazonian forest fragments. Science 278(5340):1117–1118

    Article  CAS  Google Scholar 

  • Laurance WF, Curran TJ (2008) Impact of wind disturbance on fragmented tropical forests: a review and synthesis. Autral Ecol 33:399–408

    Article  Google Scholar 

  • Magnago LFS, Rocha MF, Meyer L, Martins SV, Meira-Neto JAA (2015) Microclimatic conditions at forest edges have significant impacts on vegetation structure in large Atlantic forest fragments. Biodiv Conserv 24:2305–2318

    Article  Google Scholar 

  • Martius C, Höfer H, Garcia MV, Römbke J, Hanagarth W (2004) Litter fall, litter stocks and decomposition rates in rainforest and agroforestry sites in central Amazonia. Nutr Cycl Agroecosyst 68(2):137–154

    Article  CAS  Google Scholar 

  • Mata S, Braga JMA, Moser P, Sartori RA, Sánchez-Tapia A, Sansevero JBB (2022) Forever young: arrested succession in communities subjected to recurrent fires in a lowland tropical forest. Plant Ecol 223(6):659–670

    Article  Google Scholar 

  • Menezes GSC, Cazetta E, Dodonov P (2019) Vegetation structure across fire edges in a Neotropical rain forest. For Ecol Manag 453:17587

    Article  Google Scholar 

  • Midoko-Iponga D, Mpikou RGJ, Loumeto J, Picard N (2020) The effect of different anthropogenic disturbances on litterfall of a dominant pioneer rain forest tree in Gabon. Afr J Ecol 58(2):281–290

    Article  Google Scholar 

  • Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10:58–62

    Article  CAS  PubMed  Google Scholar 

  • Pardini R, Faria D, Accacio GM, Laps RR, Mariano-Neto E, Paciencia ML, Baumgarten J (2009) The challenge of maintaining Atlantic forest biodiversity: a multi-taxa conservation assessment of specialist and generalist species in an agro-forestry mosaic in southern Bahia. Biol Conserv 142(6):1178–1190

    Article  Google Scholar 

  • Parkins K, York A, Di Stefano J (2018) Edge effects in fire-prone landscapes: ecological importance and implications for fauna. Ecol Evol 8:5937–5948

    Article  PubMed  PubMed Central  Google Scholar 

  • Pohlert T (2023) PMCMRplus: calculate pairwise multiple comparisons of mean rank sums extended. R package version 1.9.8, <https://CRAN.R-project.org/package=PMCMRplus>.

  • Portela RCQ and Santos FAM (2007) Produção e espessura da serapilheira na borda e interior de fragmentos florestais de Mata Atlântica de diferentes tamanhos. Revista Brasileira De Botânica 30:271–280

    Google Scholar 

  • R Core Team 2022 R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. URL https://www.R-project.org/.

  • Rawat N, Nautiyal BP, Nautiyal MC (2010) Litter decomposition rate and nutrient release from different litter forms in a Himalayan alpine ecosystem. The Environm 30:279–288. https://doi.org/10.1007/s10669-010-9275-8

    Article  Google Scholar 

  • Ries L, Murphy SM, Wimp GM, Fletcher RJ Jr (2017) Closing persistent gaps in knowledge about edge ecology. Curr Landsc Ecol Rep 2:30–41

    Article  Google Scholar 

  • Rocha JIS, Menezes GSC, Cazetta E, Dodonov P, Talora DC (2022a) Seed rain across fire-created edges in a neotropical rainforest. Plant Ecol 223:247–261

    Article  Google Scholar 

  • JIS Rocha, LFS Magnago and D Piotto 2022b Litter production in successional forests of southern Bahia, Brazil. J of Trop Ecol 1–9.

  • Rocha-Santos L, Pessoa MS, Cassano CR, Talora DC, Orihuela RL, Mariano-Neto E, Morante-Filho JC, Faria D, Cazetta E (2016) The shrinkage of a forest: landscape-scale deforestation leading to overall changes in local forest structure. Biol Conserv 196:1–9

    Article  Google Scholar 

  • Ruiz-Benito P, Gomez-Aparicio L, Paquette A, Messier C, Kattge J, Zavala MA (2014) Diversity increases carbon storage and tree productivity in Spain forest. Glob Ecol Biogeog 23:311–322

    Article  Google Scholar 

  • Ruprecht E, Szabó A (2012) Grass litter is a natural seed trap in long-term undisturbed grassland. J Veget Science 23:495–504

    Article  Google Scholar 

  • Sánchez-Silva S, De Jong BHJ, Aryal DR, Huerta-Lwanga E, MendozaVega J (2018) Trends in leaf traits, litter dynamics and associated nutrient cycling along a secondary successional chronosequence of semi-evergreen tropical forest in South-Eastern Mexico. J of Trop Ecol 34:364–377

    Article  Google Scholar 

  • Santos HG, Carvalho Junior W, Dart RO, Aglio MLD, Sousa JS, Pares JG, Fontana A, Martins ALS, Oliveira AP (2011) O novo mapa de solos do Brasil: legenda atualizada. Embrapa Solos 67:1517–2627

    Google Scholar 

  • Sayer EJ (2006) Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol Rev 81:1–31

    Article  PubMed  Google Scholar 

  • SEI-BA 1998 Atributos climáticos do estado da Bahia. https://www.sei.ba.gov.br/. Accessed 03 June 2017

  • Seta T, Zerihun W (2018) Litterfall dynamics in Boter-Becho forest: moist evergreen montane forests of Southwestern Ethiopia. J Ecol Nat Envir 10:13–21

    Article  Google Scholar 

  • Silva-Matos DM, Fonseca GDFM, Silva-Lima L (2005) Differences on post-fire regeneration of the pioneer trees cecropia glazioui and trema micrantha in a lowland Brazilian Atlantic Forest. International J of Trop Ecol 53:1–4

    Google Scholar 

  • Silver WL, Hall SJ, González G (2014) Differential effects of canopy trimming and litter deposition on litterfall and nutrient dynamics in a wet subtropical forest. For Ecol Manag 332:47–55

    Article  Google Scholar 

  • Silveira MV, Silva-Junior CH, Anderson LO, Aragão LE (2022) Amazon fires in the 21st century: the year of 2020 in evidence. Glob Ecol Biogeogr 31(10):2026–2040

    Article  Google Scholar 

  • Sizer NC, Tanner EVJ, Ferraz IDK (2000) Edge effects on litterfall mass and nutrient concentrations in forest fragments in central Amazonia. J Trop Ecol 16:853–863

    Article  Google Scholar 

  • Trentini CP, Villagra M, Pámiesa DG, Laborde VB, Bedano JC, Campanello PI (2018) Effect of nitrogen addition and litter removal on understory vegetation, soil mesofauna, and litter decomposition in loblolly pine plantations in subtropical Argentina. For Ecol and Manag 429:133–142

    Article  Google Scholar 

  • Turner E, Foster WA (2009) The impact of forest conversion to oil palm on arthropod abundance and biomass in Sabah. Malaysia J of Tropl Ecol 25(1):23–30

    Article  Google Scholar 

  • Vasconcelos HL, Laurence WF (2005) Influence of habitat, litter type, and soil invertebrates on leaf-litter decomposition in a fragmented Amazonian landscape. Oecologia 144:456–546

    Article  PubMed  Google Scholar 

  • Vasconcelos HL, Luizão FJ (2004) Litter production and litter nutrient concentrations in a fragmented Amazonian landscape. Ecol Applic 14:884–892

    Article  Google Scholar 

  • Vidal MM, Pivello VR, Meirelles ST, Metzger JP (2007) Produção de serapilheira em floresta Atlântica secundária numa paisagem fragmentada (Ibiúna, SP): importância da borda e tamanho dos fragmentos. Revista Brasileira De Botânica 30:521–532

    Google Scholar 

  • Villela DM, Nascimento MT, Aragao LEO, Da Gama DM (2006) Effect of selective logging on forest structure and nutrient cycling in a seasonally dry Brazilian Atlantic forest. J Biogeogr 33(3):506–516

    Article  Google Scholar 

  • Vitousek P, Sanford RL (1986) Nutrient cycling in moist tropical forest. Ann Rev of Ecol and Syst 17:137–167

    Article  Google Scholar 

  • Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc (b) 73:3–36

    Article  Google Scholar 

  • Wood SN, Pya N, Saefken B (2016) Smoothing parameter and model selection for general smooth models. J of the Amer Stat Assoc 111:1548–1575

    Article  CAS  Google Scholar 

  • Wood S, Scheipl F (2020) gamm4: Generalized additive mixed models using ‘mgcv’ and ‘lme4’. R package version 0.2-6, <https://CRAN.R-project.org/package=gamm4>.

  • Xu X, Jia G, Zhang X, Riley WJ, Xue Y (2020) Climate regime shift and forest loss amplify fire in Amazonian forests. Glob Change Biol 26(10):5874–5885

    Article  Google Scholar 

  • Zhou G, Guan L, Wei X, Zhang D, Zhang Q, Yan J, Wen D, Liu D, Liu S, Huang Z, Kong G, Mo J, Yu Q (2007) Litterfall production along successional and altitudinal gradients of subtropical monsoon evergreen broadleaved forests in Guangdong, China. Plant Ecol 188:77–89

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed Effects Models and Extensions in Ecology with R. Statistics for Biology and Health, New York

    Book  Google Scholar 

Download references

Acknowledgements

We are grateful to ICMBio (Chico Mendes Institute for Biodiversity Conservation) for the authorization to carry out the research in the Una Wildlife Refuge and to Adson Santos for his assistance in data collection, as well as two anonymous reviewers and the special issue editor, Dr. Christina Rinas, for insightful suggestions that greatly improved the quality of this manuscript.

Funding

This study was funded by the Rectorate for Research and Post-Graduation of the State University of Santa Cruz–UESC (PROPP—project numbers 00220.1100.1773 and 00220.1100.1805). We received financial support from Idea Wild for essential field equipment. JISR received a doctoral scholarship from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 and a Masters scholarship from the Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the main text of the manuscript. PD, DCT and JISR designed the study. JISR collected the data. PD and JISR were responsible for data analysis and visualization. All authors reviewed the manuscript.

Corresponding author

Correspondence to Janaine Isabela da Silva Rocha.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Ethical statement

The authors assert that all the collections of vegetative material contributing to this work were authorized by ICMBio (Chico Mendes Institute for Biodiversity Conservation) (SISBIO license no. 60990-1).

Additional information

Communicated by Christina Rinas.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 865 KB)

Supplementary file2 (DOCX 1080 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Rocha, J.I., Talora, D.C. & Dodonov, P. Effects of fire and edges on plant litterfall in a Neotropical rainforest, Brazil. Plant Ecol (2024). https://doi.org/10.1007/s11258-024-01415-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11258-024-01415-8

Keywords

Navigation