Skip to main content
Log in

Effects of linear edges on tree communities and soil properties in a moist semi-deciduous forest in Ghana

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Edge disturbance can affect forest vegetation and soil properties, causing shifts in plant community structure. We investigated how linear forest edges influence tree community structure, soil properties, and the relationship of tree species composition with soil properties in a moist semi-deciduous forest, Ghana. We quantified tree community structure in 35 20 × 20-m plots each in forest edge and interior areas, and analyzed soil properties in the plots. Our findings revealed no significant difference in tree diversity between the forest edge and interior, although species composition differed considerably. The forest interior supported a significantly higher tree density than the forest edge, although basal area was similar between the edge and interior. Individual tree species exhibited different responses to the forest edge at varying magnitudes. Generally, light-demanding and shade-tolerant species showed associations with the forest edge and interior, respectively. Soils at the forest edge contained significantly lower Mg and higher Na concentrations than soils in the forest interior, while concentrations of other soil properties were similar between the forest edge and interior. Many of the soil properties (Na, Ca, P, Mg, effective cation exchange capacity, organic matter, soil texture) were uniquely associated with tree species composition in either the forest edge or interior. This study increases our understanding of linear edge effects on tree communities and soil properties, which can contribute to developing comprehensive edge theory for forest management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The raw data supporting the findings of this manuscript will be made available by the authors upon request.

References

  • Addo-Fordjour P, Ankomah F (2017) Patterns and drivers of forest land cover changes in tropical semi-deciduous forests in Ghana. J Land Use Sci 12:71–86. https://doi.org/10.1080/1747423X.2016.1241313

    Article  Google Scholar 

  • Addo-Fordjour P, Owusu-Boadi K (2016) Linear edge effects on liana and tree communities in two tropical forest ecosystems in Ghana. Ecol Res 31:709–718. https://doi.org/10.1007/s11284-016-1382-7

    Article  Google Scholar 

  • Addo-Fordjour P, Rahmad ZB, Shahrul AMS (2014) Environmental factors influencing liana community diversity, structure and habitat associations in a tropical hill forest, Malaysia. Plant Ecol Divers 7:485–496. https://doi.org/10.1080/17550874.2013.782369

    Article  Google Scholar 

  • Addo-Fordjour P, Ofosu-Bamfo B, Kwofie F, Akyea-Bobi N, Rahman FA, Amoah E (2020) Changes in liana community structure and functional traits along a chronosequence of selective logging in a moist semi-deciduous forest in Ghana. Plant Ecol Divers 13:75–84. https://doi.org/10.1080/17550874.2019.1675095

    Article  Google Scholar 

  • Addo-Fordjour P, Antwi Agyei L, Ofosu-Bamfo B, Issifu IN, Osei GO, Appiah-Kubi R, Bremang EK, Kroduah PO (2021a) Temporal dynamics of liana communities in moist semi-deciduous forest stands with different management histories in Ghana. For Ecol Manage 489:1–8. https://doi.org/10.1016/j.foreco.2021.119042

    Article  Google Scholar 

  • Addo-Fordjour P, Marfo I, Ofosu-Bamfo B (2021b) Forest fragmentation drives liana community structure but not the patterns of liana–tree interaction network in two forest ecosystems in Ghana. Ecol Res 36:988–1004. https://doi.org/10.1111/1440-1703.12258

    Article  Google Scholar 

  • Aguiar M, Conway AJ, Bell JK, Stewart KJ (2023) Agroecosystem edge effects on vegetation, soil properties, and the soil microbial community in the Canadian prairie. PLoS ONE 18:1–21

    Article  Google Scholar 

  • Alignier A, Deconchat M (2013) Patterns of forest vegetation responses to edge effect as revealed by a continuous approach. Ann for Sci 70:606–609. https://doi.org/10.1007/s13595-013-0301-0

    Article  Google Scholar 

  • Aragón G, Abuja L, Belinchón R, Martínez I (2015) Edge type determines the intensity of forest edge effect on epiphytic communities. Eur J for Res 134:443–451. https://doi.org/10.1007/s10342-015-0863-5

    Article  Google Scholar 

  • Arbonnier M (2004) Trees, shrubs and lianas of West African dry zones. MARGRAF Publishers GMBH, MNHN, Weikersheim, CIRAD

    Google Scholar 

  • Bae J, Ryu Y (2021) The magnitude and causes of edge effects on soil organic carbon stocks within and across urban to rural forest patches. Landsc Urban Plan 215:1–11. https://doi.org/10.1016/j.landurbplan.2021.104223

    Article  Google Scholar 

  • Barros MF, Pinho BX, Leão T, Tabarelli M (2018) Soil attributes structure plant assemblages across an Atlantic forest mosaic. J Plant Ecol 11:613–622. https://doi.org/10.1093/jpe/rtx037

    Article  Google Scholar 

  • Barshad I (1957) Factors affecting clay formation. Clays Clay Miner 6:110–132. https://doi.org/10.1346/ccmn.1957.0060110

    Article  ADS  Google Scholar 

  • Bijay-Singh STB (2022) The effects of adequate and excessive application of mineral fertilizers on the soil. Reference module in earth systems and environmental sciences. Elsevier, Amsterdam

    Google Scholar 

  • Bouyoucos GJ (1962) Hydrometer method improved for making particle size analysis of soils. Agron J 54:464–465

    Article  Google Scholar 

  • Braithwaite NT, Mallik AU (2012) Edge effects of wildfire and riparian buffers along boreal forest streams. J Appl Ecol 49:192–201. https://doi.org/10.1111/j.1365-2664.2011.02076.x

    Article  Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59:39–45. https://doi.org/10.1097/00010694-194501000-00006

    Article  ADS  CAS  Google Scholar 

  • Burke DM, Nol E (1998) Edge and fragment size effects on the vegetation of deciduous forests in Ontario, Canada. Nat Areas J 18:45–53

    Google Scholar 

  • Campbell MJ, Edwards W, Magrach A, Alamgir M, Porolak G, Mohandass D, Laurance WF (2018) Edge disturbance drives liana abundance increase and alteration of liana–host tree interactions in tropical forest fragments. Ecol Evol 8:4237–4251. https://doi.org/10.1002/ece3.3959

    Article  PubMed  PubMed Central  Google Scholar 

  • Cardelús CL, Mekonnen AB, Jensen KH, Woods CL, Baez MC, Montufar M, Bazany K, Tsegay BA, Scull PR, Peck WH (2020) Edge effects and human disturbance influence soil physical and chemical properties in Sacred Church Forests in Ethiopia. Plant Soil 453:329–342. https://doi.org/10.1007/s11104-020-04595-0

    Article  CAS  Google Scholar 

  • Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84:45–67. https://doi.org/10.1890/13-0133.1

    Article  Google Scholar 

  • Chaturvedi R, Raghubanshi A (2018) Effect of soil moisture on composition and diversity of trees in tropical dry foreste. MOJ Ecol Environ Sci 3:6–8

    Google Scholar 

  • De Cáceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574. https://doi.org/10.1890/08-1823.1

    Article  PubMed  Google Scholar 

  • De Cáceres M, Legendre P, Moretti M (2010) Improving indicator species analysis by combining groups of sites. Oikos 119:1674–1684. https://doi.org/10.1111/j.1600-0706.2010.18334.x

    Article  ADS  Google Scholar 

  • De Pauw K, Sanczuk P, Meeussen C, Depauw L, De Lombaerde E, Govaert S, Vanneste T, Brunet J, Cousins SAO, Gasperini C, Hedwall PO, Iacopetti G, Lenoir J, Plue J, Selvi F, Spicher F, Uria-Diez J, Verheyen K, Vangansbeke P, De Frenne P (2022) Forest understorey communities respond strongly to light in interaction with forest structure, but not to microclimate warming. New Phytol 233:219–235. https://doi.org/10.1111/nph.17803

    Article  PubMed  Google Scholar 

  • do Couto-Santos APL, Conceição AA, Funch LS (2015) The role of temporal scale in linear edge effects on a submontane Atlantic forest arboreal community. Acta Bot Brasilica 29:190–197. https://doi.org/10.1590/0102-33062014abb3732

    Article  Google Scholar 

  • Doe EK, Attua EM, Dogbatse JA, Fosu-Mensah BY (2022) Assessing the condition and capability of soils in cocoa districts of Ghana using geovisualization. Soil Secur 7:1–7. https://doi.org/10.1016/j.soisec.2022.100058

    Article  Google Scholar 

  • Dormann CF, Bagnara M, Boch S, Hinderling J, Janeiro-Otero A, Schäfer D, Schall P, Hartig F (2020) Plant species richness increases with light availability, but not variability, in temperate forests understorey. BMC Ecol 20:1–9. https://doi.org/10.1186/s12898-020-00311-9

    Article  Google Scholar 

  • Elias SA (2017) Rise of human influence on the world’s biota. Reference module in earth systems and environmental sciences. Elsevier, Amsterdam

    Google Scholar 

  • Ewers RM, Didham RK (2006) Continuous response functions for quantifying the strength of edge effects. J Appl Ecol 43:527–536. https://doi.org/10.1111/j.1365-2664.2006.01151.x

    Article  Google Scholar 

  • Faucon MP, Le Stradic S, Boisson S, wa Ilunga EI, Séleck M, Lange B, Guillaume D, Shutcha MN, Pourret O, Meerts P, Mahy G (2016) Implication of plant-soil relationships for conservation and restoration of copper-cobalt ecosystems. Plant Soil 403:153–165. https://doi.org/10.1007/s11104-015-2745-5

    Article  CAS  Google Scholar 

  • Feeley KJ (2004) The effects of forest fragmentation and increased edge exposure on leaf litter accumulation. J Trop Ecol 20:709–712. https://doi.org/10.1017/S0266467404001828

    Article  Google Scholar 

  • Fonseca MS (2008) Edge effect. In: Jørgensen SE, Fath BD (eds) Encyclopedia of ecology. Elsevier, Amsterdam, pp 1207–1211

    Chapter  Google Scholar 

  • Fontaine C, Guimarães PR, Kéfi S, Loeuille N, Memmott J, van der Putten WH, van Veen FJF, Thébault E (2011) The ecological and evolutionary implications of merging different types of networks. Ecol Lett 14:1170–1181

    Article  PubMed  Google Scholar 

  • Fontoura SB, Ganade G, Larocca J (2006) Changes in plant community diversity and composition across an edge between Araucaria forest and pasture in South Brazil. Rev Bras Bot 29:79–91. https://doi.org/10.1590/S0100-84042006000100008

    Article  Google Scholar 

  • Franklin CMA, Filicetti AT, Nielsen SE (2021a) Seismic line width and orientation influence microclimatic forest edge gradients and tree regeneration. For Ecol Manage 492:1–13. https://doi.org/10.1016/j.foreco.2021.119216

    Article  Google Scholar 

  • Franklin CMA, Harper KA, Clarke MJ (2021b) Trends in studies of edge influence on vegetation at humancreated and natural forest edges across time and space. Can J for Res 51:274–282

    Article  Google Scholar 

  • Ghana Statistical Service (2014) 2010 population and housing census. District analytical report, Asunafo North Municipality

  • Goldblum D, Beatty SW (1999) Influence of an old field/forest edge on a northeastern United States deciduous forest understory community. J Torrey Bot Soc 126:335–343. https://doi.org/10.2307/2997317

    Article  Google Scholar 

  • Gomes LP, Dias PB, Dias HM, Kunz SH (2022) Growing at the forest edges: how natural regeneration develops under fragmentation. Iforest 15:240–247. https://doi.org/10.3832/IFOR3834-015

    Article  Google Scholar 

  • Goosem M (2007) Fragmentation impacts caused by roads through rainforests. Curr Sci 93:1587

    Google Scholar 

  • Govaert S, Meeussen C, Vanneste T, Bollmann K, Brunet J, Cousins SAO, Diekmann M, Graae BJ, Hedwall PO, Heinken T, Iacopetti G, Lenoir J, Lindmo S, Orczewska A, Perring MP, Ponette Q, Plue J, Selvi F, Spicher F, Tolosano M, Vermeir P, Zellweger F, Verheyen K, Vangansbeke P, De Frenne P (2020) Edge influence on understorey plant communities depends on forest management. J Veg Sci 31:281–292

    Article  Google Scholar 

  • Hall JB, Swaine MD (1981) Distribution and ecology of vascular plants in a tropical rain forest. Forest vegetation in Ghana. Geobotany 1. Junk, The Hague

  • Hammer Ø, Harper DAT, Ryan PD (2001) Past: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Harper KA, Macdonald SE, Burton PJ, Chen J, Brosofske KD, Saunders SC, Euskirchen ES, Roberts D, Jaiteh MS, Esseen PA (2005) Edge influence on forest structure and composition in fragmented landscapes. Conserv Biol 19:768–782

    Article  Google Scholar 

  • Hawthorne W, Jongkind C (2006) Woody plants of Western African forests: a guide to the forest trees, shrubs and lianes from Senegal to Ghana. Royal Botanic Gardens, Richmond

    Google Scholar 

  • Hawthorne WD, Sheil D, Agyeman VK, Abu Juam M, Marshall CAM (2012) Logging scars in Ghanaian high forest: towards improved models for sustainable production. For Ecol Manage 271:27–36. https://doi.org/10.1016/j.foreco.2012.01.036

    Article  Google Scholar 

  • Hawthorne W (1990) W. Hawthorne. 1990. Field guide to the forest trees of Ghana. Ghana Forestry Series 1. Natural Resources Institute, for the Overseas Development Administration, Catham, Kent

  • Jidere CM, Ene J, Inem US, Uzoh IM (2012) Nutrient Elements distribution in cultivated and uncultivated soils and sediments of surrounding streams of Okai and Kwanta in Abiriba, Abia State, Southeastern Nigeria. AgroScience 11:20–26

    Google Scholar 

  • Jones JB (1991) Kjeldahl method for nitrogen determination. Micro-Macro Publishing, Athens

    Google Scholar 

  • Kacholi DS (2014) Edge-interior disparities in tree species and structural composition of the kilengwe forest in morogoro region, Tanzania. ISRN Biodivers. https://doi.org/10.1155/2014/873174

    Article  Google Scholar 

  • Lange M, Koller-France E, Hildebrandt A, Oelmann Y, Wilcke W, Gleixner G (2019) How plant diversity impacts the coupled water, nutrient and carbon cycles. Advances in ecological research. Elsevier, Amsterdam

    Google Scholar 

  • Latt MM, Park BB (2022) Tree species composition and forest community types along environmental gradients in htamanthi wildlife sanctuary, myanmar: implications for action prioritization in conservation. Plants 11:1–12. https://doi.org/10.3390/plants11162180

    Article  CAS  Google Scholar 

  • Laurance WF, Nascimento HEM, Laurance SG, Andrade A, Ewers RM, Harms KE, Luizão RCC, Ribeiro JE (2007) Habitat fragmentation, variable edge effects, and the landscape-divergence hypothesis. PLoS ONE 2:1–8. https://doi.org/10.1371/journal.pone.0001017

    Article  Google Scholar 

  • Li J, Zhao C, Peng Y, Hu Y, Yuan X (2018) Edge effects on tree growth and species diversity in forests of different types and ages. Polish J Ecol 66:239–249. https://doi.org/10.3161/15052249PJE2018.66.3.004

    Article  Google Scholar 

  • Li X, Xing Y, Tang L, Liu N, Chang Q, Zhang J (2022) Adsorption of cations at the illite–water interface and its effect on intrinsic potassium ions. Eur J Soil Sci 73:1–14. https://doi.org/10.1111/ejss.13155

    Article  CAS  Google Scholar 

  • Liu S, Yang R, Peng X, Hou C, Ma J, Guo J (2022) Contributions of plant litter decomposition to soil nutrients in ecological tea gardens. Agriculture 12:1–19

    CAS  Google Scholar 

  • Loide V (2004) About the effect of the contents and ratios of soil’s available calcium, potassium and magnesium in liming of acid soils. Agron Res 2:71

    Google Scholar 

  • Lyons A, Ashton PA, Powell I, Oxbrough A (2018) Habitat associations of epigeal spiders in upland calcareous grassland landscapes: the importance for conservation. Biodivers Conserv 27:1201–1219. https://doi.org/10.1007/s10531-017-1488-4

    Article  Google Scholar 

  • McLean EO (1982) Soil pH and lime requirement determination. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis: Part 2 chemical and microbiological properties. Wiley, Hoboken

    Google Scholar 

  • Morreale LL, Thompson JR, Tang X, Reinmann AB, Hutyra LR (2021) Elevated growth and biomass along temperate forest edges. Nat Commun 12:1–8. https://doi.org/10.1038/s41467-021-27373-7

    Article  ADS  CAS  Google Scholar 

  • Mouillot D, Culioli JM, Do CT (2002) Indicator species analysis as a test of non-random distribution of species in the context of marine protected areas. Environ Conserv 29:385–390. https://doi.org/10.1017/S0376892902000267

    Article  Google Scholar 

  • Negassa W, Abera T, Friesen DK, Deressa A, Dinsa B (2001) Evaluation of compost for maize production under farmers’ conditions. In: Proceedings of the 7th eastern and southern Africa regional maize conference. pp 382–386

  • Ofosu-Bamfo B, Addo-Fordjour P, Belford EJD (2019) Does road-edge affect liana community structure and liana-host interactions in evergreen rainforests in Ghana? Acta Oecologica 101:1–12. https://doi.org/10.1016/j.actao.2019.103476

    Article  Google Scholar 

  • Ofosu-Bamfo B, Addo-Fordjour P, Belford EJD (2022) Edge disturbance shapes liana diversity and abundance but not liana-tree interaction network patterns in moist semi-deciduous forests, Ghana. Ecol Evol 12:1–20. https://doi.org/10.1002/ece3.8585

    Article  Google Scholar 

  • Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Solymos P, Stevens MHH (2022) Vegan: community ecology package. R package version 2.6- 2. https://CRAN.R-project.org/package=vegan. pp 1–295

  • Pillay R, Venter M, Aragon-Osejo J, González-del-Pliego P, Hansen AJ, Watson JEM, Venter O (2022) Tropical forests are home to over half of the world’s vertebrate species. Front Ecol Environ 20:10–15. https://doi.org/10.1002/fee.2420

    Article  PubMed  Google Scholar 

  • Pohlman CL (2006) Internal fragmentation in the rainforest : edge effects of highways , powerlines and watercourses on tropical rainforest understorey microclimate , vegetation structure and composition , physical disturbance and. PhD Thesis, James Cook University

  • Pohlman CL, Turton SM, Goosem M (2007) Edge effects of linear canopy openings on tropical rain forest understory microclimate. Biotropica. https://doi.org/10.1111/j.1744-7429.2006.00238.x

    Article  Google Scholar 

  • Pöpperl F, Seidl R (2021) Effects of stand edges on the structure, functioning, and diversity of a temperate mountain forest landscape. Ecosphere 12:1–12. https://doi.org/10.1002/ecs2.3692

    Article  Google Scholar 

  • Prieto PV, Sansevero JBB, Garbin ML, Braga J, Rodrigues PJFP (2014) Edge effects of linear canopy openings on understorey communities in a lowland Atlantic tropical forest. Appl Veg Sci 17:121–128

    Article  Google Scholar 

  • Razafindratsima OH, Raoelinjanakolona NN, Heriniaina RR, Nantenaina RH, Ratolojanahary TH, Dunham AE (2021) Simplified communities of seed-dispersers limit the composition and flow of seeds in edge habitats. Front Ecol Evol 9:1–13. https://doi.org/10.3389/fevo.2021.655441

    Article  Google Scholar 

  • Ruwanza S (2019) The edge effect on plant diversity and soil properties in abandoned fields targeted for ecological restoration. Sustain 11:1–12. https://doi.org/10.3390/su11010140

    Article  Google Scholar 

  • Sampaio AB, Scariot A (2011) Edge effect on tree diversity, composition and structure in a deciduous dry forest in Central Brazil. Rev Arvore 35:1121–1134. https://doi.org/10.1590/S0100-67622011000600018

    Article  Google Scholar 

  • Schnitzer SA, Carson WP (2010) Lianas suppress tree regeneration and diversity in treefall gaps. Ecol Lett 13:849–857. https://doi.org/10.1111/j.1461-0248.2010.01480.x

    Article  PubMed  Google Scholar 

  • Schnitzer SA, Dalling JW, Carson WP (2000) The impact of lianas on tree regeneration in tropical forest canopy gaps: evidence for an alternative pathway of gap-phase regeneration. J Ecol 88:655–666. https://doi.org/10.1046/j.1365-2745.2000.00489.x

    Article  Google Scholar 

  • Swacha G, Botta-Dukát Z, Kącki Z, Pruchniewicz D, Zołnierz L (2018) The effect of abandonment on vegetation composition and soil properties in Molinion meadows (SW Poland). PLoS ONE 13:1–15. https://doi.org/10.1371/journal.pone.0197363

    Article  CAS  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38. https://doi.org/10.1097/00010694-193401000-00003

    Article  ADS  CAS  Google Scholar 

  • Yusuf AA, Eben-Johnson AF, Chude VO, Amapu IY (2007) Soil characteristics and the performance of sorghum (Sorghum bicolor (L) Moench) on tin mine spoils of the Jos Plateau, Nigeria. In: Batiano A, Waswa B, Kihara J, Kimetu J (eds) Advances in integrated soil fertility management in sub-Saharan Africa. Springer, Dordrecht

    Google Scholar 

  • Zurita G, Guy Pe’er M, Bellocq I, Hansbauer MM (2012) Edge effects and their influence on habitat suitability calculations: A continuous approach applied to birds of the Atlantic forest. J Appl Ecol 49:503–512. https://doi.org/10.1111/j.1365-2664.2011.02104.x

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the managers of Bobiri Forest Reserve for granting them access to the forest.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. PAF analyzed the data and led drafting of the manuscript, with inputs from all the other authors. All the authors, with the exception of PAF contributed equally to data collection.

Corresponding author

Correspondence to Patrick Addo-Fordjour.

Ethics declarations

Competing interests

The authors have no competing interest to disclose.

Ethical approval

This work did not involve human or animal studies.

Informed consent

Not applicable.

Additional information

Communicated by Karen Harper.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Addo-Fordjour, P., Abrokwah, J., Arko, A.P. et al. Effects of linear edges on tree communities and soil properties in a moist semi-deciduous forest in Ghana. Plant Ecol (2024). https://doi.org/10.1007/s11258-024-01396-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11258-024-01396-8

Keywords

Navigation