Skip to main content
Log in

Large diameters and tree bark physical attributes drive vascular epiphyte-phorophyte relationships in Amazonian black-water floodplain forest

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Understanding the interactive relationships between organisms is key to understanding community structure and planning appropriate conservation measures. Even more so for plant-plant interactions, which are poorly understood. We studied the vascular epiphyte community and its interactions with the tree community (phorophytes) in Amazonian black-water floodplain forests (igapó), analyzing 58 floristic inventory plots located along a 517 km stretch of the Brazilian Negro River, in the Central Amazon. The vascular epiphytes and trees were identified and quantified, and the physical attributes of the bark were measured, as well as the diameter at breast height (DBH) of the tree species. A total of 2746 trees ≥ 10 cm DBH were inventoried, of which 969 were phorophytes (35.29%), hosting 4692 individuals of epiphytic species, belonging to 17 families 50 genera, and 106 species. Pouteria elegans was the most abundant phorophyte, however, Aldina latifolia showed proportionally higher richness and abundance of epiphytes. Codonanthopsis crassifolia was the epiphyte that colonized most of the phorophytes and showed the highest Epiphytic Importance Value (EIV). The average values for thickness, saturated weight, water retention capacity, and diameter were significantly higher in the tree species that housed vascular epiphytes. In addition, the vascular epiphyte richness (R2m = 0.32; R2c = 0.41) and abundance (R2m = 0.36; R2c = 0.90) were strongly influenced by larger diameters of phorophytes and their saturated bark weight. Our results confirm the importance of phorophyte size (DBH) for epiphyte colonization, present the most complete epiphyte list of Amazonian black-water floodplain forests and provide evidence that physical attributes of tree bark drive the structure of vascular epiphyte-phorophyte interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not available.

References

  • Arditti J (1980) Aspects of the physiology of orchids. In: Advances in botanical research Vol. 7. Academic Press. pp. 421–655

  • Arévalo R, Betancur J (2004) Diversidad de epifitas vasculares em cuatro bosques del sector suroriental de la Serrania de Chiribiquete Guayana Colombiana. Caldasia 26(2):359–380

    Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2014) Fitting linear mixed-effects models using lme4. https://arxiv.org/arXiv:1406.5823

  • Benzing DH (1990) Vascular epiphytes. Journal of tropical ecology, Vol 12. Cambridge University Press, Cambridge, p. 354

  • Boelter CR, Dambros CS, Nascimento HE, Zartman CE (2014) A tangled web in tropical tree-tops: effects of edaphic variation, neighbourhoodphorophyte composition and bark characteristics on epiphytes in a central Amazonian forest. J VegSci 25(1090):1099. https://doi.org/10.1111/jvs.12154

    Article  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24(3):127–135

    Article  PubMed  Google Scholar 

  • Bonates LCM (2007) Anatomia ecológica da folha e da raiz e aspectos ecofisiológicos de Orchidaceae epífitas de uma campina da Amazônia Central. Tese (doutorado), INPA/UFAM, Manaus.

  • Burns KC, Zotz G (2010) A hierarchical framework for investigating epiphyte assemblages: networks, meta-communities, and scale. Ecology 91(2):377–385

    Article  CAS  PubMed  Google Scholar 

  • Callaway RM, Reinhart KO, Moore GW, Moore DJ, Pennings SC (2002) Epiphyte host preferences and host traits: mechanisms for species-specific interactions. Oecologia 132:221–230

    Article  ADS  PubMed  Google Scholar 

  • Castro Hernández JC, Wolf JD, García-Franco JG, González-Espinosa M (1999) The influence of humidity, nutrients and light on the establishment of the epiphytic bromeliad Tillandsia guatemalensis in the highlands of Chiapas Mexico. Rev Biol Trop 47(4):763–773

    Google Scholar 

  • Coelho MAN, Waechter JL, Mayo SJ (2009) Revisão Taxonômica Das Espécies de Anthurium(Araceae) Seção UrospadixSubseção Flavescentiviridia. Rodriguésia 60(4):799–864

    Article  Google Scholar 

  • Cruz G, Andrade S (2008) Rio Negro, Manaus e as mudanças no clima. Instituto Socioambiental, São Paulo

  • Einzmann HJ, Beyschlag J, Hofhansl F, Wanek W, Zotz G (2015) Host tree phenology affects vascular epiphytes at the physiological, demographic and community level. AoB Plants. https://doi.org/10.1093/aobpla/plu073

    Article  Google Scholar 

  • Elias JP, Mortara SR, Nunes-Freitas AF, van den Berg E, Ramos FN (2021) Host tree traits in pasture areas affect forest and pasture specialist epiphyte species differently. Am J Bot 108(4):598–606. https://doi.org/10.1002/ajb2.1634

    Article  PubMed  Google Scholar 

  • Flora e Funga do Brasil. Jardim Botânico do Rio de Janeiro. Disponível em: http://floradobrasil.jbrj.gov.br/. Acessoem: out/2022

  • Flores-Palacios A, García-Franco JG (2006) The relationship between tree size and epiphyte species richness: testing four different hypotheses. J Biogeogr 33(2):323–330

    Article  Google Scholar 

  • Gonçalves CN, Waechter JL (2003) Aspectos florísticos e ecológicos de epífitos vasculares sobre figueiras isoladas no norte da planície costeira do Rio Grande do Sul. Acta Bot Bras 17:89–100

    Article  Google Scholar 

  • Guralnick LJ, Ting IP, Lord EM (1986) Crassulacean acid metabolism in the Gesneriaceae. Am J Bot 73(3):336–345

    Article  CAS  Google Scholar 

  • INMET – Instituto Nacional de Metereologia. (2020) Dados climatológicos de Temperatura (°C) e Precipitação (mm) da Estação Meteorológica de Manaus. https://portal.inmet.gov.br/dadoshistoricos, Acessado em 16/07/2022

  • Irume MV (2019) Composição, padrões de distribuição vertical e formas de vida epifíticas de Philodendron Schott (AraceaeJuss.) na Amazônia Central. Tese (Doutorado- programa de pós-graduação em botânica) INPA-Manaus.

  • Irume MV, Morais MDLDCS, Zartman CE, Amaral ILD (2013) Floristic composition and community structure of epiphytic angiosperms in a Terra firme forest in central Amazonia. Acta BotanicaBrasilica 27:378–393

    Google Scholar 

  • Iv APG (2016) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20

    Article  Google Scholar 

  • Junk WJ, Wittmann F, Schöngart J, Piedade MT (2015) A classification of the major habitats of Amazonian black-water river floodplains and a comparison with their white-water counterparts. Wetlands Ecol Manage 23:677–693

    Article  CAS  Google Scholar 

  • Junk WJ, Piedade MTF, Wittmann F, Schöngart J (2020) Várzeas Amazônicas: Desafios para um manejo sustentável. Editora INPA, Manaus

  • Klein V (2018) Orchidaceae em ecossistemas de campinaranas: relações entre os padrões de distribuição e composição de espécies epífitas com características de Aldinaheterophylla. Dissertação de Mestrado, INPA, Manaus. 115 fl.

  • Klein VP, Piedade MTF (2019) Orchidaceae occurring in white-sand ecosystems of the Uatumã Sustainable Development Reserve in Central Amazon. Phytotaxa 419(2):113–148

    Article  Google Scholar 

  • López-Villalobos A, Flores-Palacios A, Ortiz-Pulido R (2008) The relationship between bark peeling rate and the distribution and mortality of two epiphyte species. PlantEcology 198:265–274

    Google Scholar 

  • Mania LF, Monteiro R (2010) Florística e ecologia de epífitas vasculares em um fragmento de floresta de restinga, Ubatuba, SP, Brasil. Rodriguésia 61:705–713

    Article  Google Scholar 

  • Marcusso GM, Kamimura VA, Borgiani R, Menini-Neto L, Lombardi JA (2022) Phytogeographic meta-analysis of the vascular epiphytes in the neotropical region. Bot Rev. https://doi.org/10.1007/s12229-021-09270-2

    Article  Google Scholar 

  • Marí ML, Toledo JJ, Nascimento HE, Zartman CE (2016) Regional and fine scale variation of Holoepiphyte community structure in Central Amazonian white-sand forests. Biotropica 48(1):70–80

    Article  Google Scholar 

  • Medeiros TDS, Jardim MAG, Quaresma AC (2014) Forófitos preferenciais de orquídeas epífitas na APA Ilha do Combu, Belém, Pará, Brasil. Biota Amazônia.

  • Mehltreter K, Flores-Palacios A, García-Franco JG (2005) Host preferences of low-trunk vascular epiphytes in a cloud forest of Veracruz Mexico. J Trop Ecol 21(6):651–660

    Article  Google Scholar 

  • Mishra P, Singh U, Pandey CM, Mishra P, Pandey G (2019) Application of student’s t-test, analysis of variance, and covariance. Ann Card Anaesth 22(4):407

    Article  PubMed  PubMed Central  Google Scholar 

  • Montero JC, Piedade MTF, Wittmann F (2014) Floristic variation across 600 km of inundation forests (Igapó) along the Negro River, Central Amazonia. Hydrobiologia 729:229–246. https://doi.org/10.1007/s10750-012-1381-9

    Article  CAS  Google Scholar 

  • Nieder J, Engwald S, Klawun M, Barthlott W (2000) Spatial distribution of vascular epiphytes (including Hemiepiphytes) in a Lowland Amazonian Rain Forest (Surumoni Crane Plot) of Southern Venezuela 1. Biotropica 32(3):385–396

    Article  Google Scholar 

  • Paine CET, Stahl C, Courtois EA, Patiño S, Sarmiento C, Baraloto C (2010) Functional explanations for variation in bark thickness in tropical rain forest trees. Funct Ecol 24(6):1202–1210

    Article  Google Scholar 

  • Ppg I (2016) A community-derived classification for extant lycophytes and ferns. J Syst Evol 54(6):563–603

    Article  Google Scholar 

  • Pridgeon AM (1982) Diagnostic anatomical characters in the Pleurothallidinae (Orchidaceae). Am J Bot 69(6):921–938

    Article  Google Scholar 

  • Quaresma AC, Piedade MTF, Feitosa YO, Wittmann F, Steege HT (2017) Composition, diversity and structure of vascular epiphytes in two contrasting Central Amazonian floodplain ecosystems. Acta BotanicaBrasilica 31:686–697

    Google Scholar 

  • Quaresma AC, Piedade MTF, Wittmann F, ter Steege H (2018) Species richness, composition, and spatial distribution of vascular epiphytes in Amazonian black-water floodplain forests. Biodivers Conserv 27:1981–2002

    Article  Google Scholar 

  • Quaresma AC, Feitosa YO, Wittmann FK, Schöngart J, Demarchi LO, Piedade MTF (2020) Does the size of the trees determine the richness and distribution of vascular epiphytes in Amazonian floodplain forests. Número 2:334–346. https://doi.org/10.4257/oeco.2020.2402.08

    Article  Google Scholar 

  • Quaresma A et al (2022) The Amazon epiphyte network: a first glimpse into continental-scale patterns of Amazonian vascular epiphyte assemblages. Front for Glob Change. https://doi.org/10.3389/ffgc.2022.828759

    Article  Google Scholar 

  • R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  • Rosell JA, Gleason S, Méndez-Alonzo R, Chang Y, Westoby M (2014) Bark functional ecology: evidence for tradeoffs, functional coordination, and environment producing bark diversity. New Phytol 201(2):486–497

    Article  PubMed  Google Scholar 

  • Sanford WW (1968) Distribution of epiphytic orchids in semi-deciduous tropical forest in southern Nigeria. J Ecol. https://doi.org/10.2307/2258101

    Article  Google Scholar 

  • Sáyago R, Lopezaraiza-Mikel M, Quesada M, Álvarez-Añorve MY, Cascante-Marín A, Bastida JM (2013) Evaluating factors that predict the structure of a commensalistic epiphyte–phorophyte network. Proc R Soc b: Biol Sci. https://doi.org/10.1098/rspb.2012.2821

    Article  Google Scholar 

  • Silva JJVD (2012) Distribuição espacial de epífitas vasculares na Amazônia Central. Dissertação (Mestrado em Diversidade Biológica), Universidade Federal do Amazonas.

  • Sioli H (1984) The Amazon and its main affluents: hydrography, morphology of the river courses, and river types. In: Sioli H (ed) The Amazon: limnology and landscape ecology of a mighty tropical river and its basin. Springer, Netherlands, pp 127–165

    Chapter  Google Scholar 

  • Sioli H (1956) ÜberNaturundMenschimbrasilianischenAmazonasgebiet. Erdkunde, 89–109.

  • Soares ML, Jardim-Lima (2005) Amazonian species of Araceae in the INPA Herbarium, Manaus—Amazonas, Brasil. Aroideana 28:134–152

    Google Scholar 

  • Taylor A, Zotz G, Weigelt P, Cai L, Karger DN, König C et al (2021) Vascular epiphytes contribute disproportionately to global centres of plant diversity. Glob Ecol Biogeogr 31:62–74. https://doi.org/10.1111/geb.13411

    Article  Google Scholar 

  • Vergara-Torres CA, Pacheco-Álvarez MC, Flores-Palacios A (2010) Host preference and host limitation of vascular epiphytes in a tropical dry forest of central Mexico. J Trop Ecol 26(6):563–570

    Article  Google Scholar 

  • Vital BR (1984) Métodos de determinação da densidade da madeira. SIF, Viçosa

  • Waechter JL (1998) Epifitismo vascular em uma floresta de estinga do Brasil subtropical. Ciência e Natura. https://doi.org/10.5902/2179460X26815

    Article  Google Scholar 

  • Wagner K, Zotz G (2020) Including dynamics in the equation: tree growth rates and host specificity of vascular epiphytes. J Ecol 108(2):761–773

    Article  Google Scholar 

  • Wagner K, Mendieta-Leiva G, Zotz G (2015) Host specificity in vascular epiphytes: a review of methodology, empirical evidence and potential mechanisms. AoB Plants. https://doi.org/10.1093/aobpla/plu092

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Guan WB, Wong MHG, Ranjitkar S, Sun WN, Pan Y et al (2017) Tree size predicts vascular epiphytic richness of traditional cultivated tea plantations in Southwestern China. Glob Ecol Conserv 10:147–153

    Google Scholar 

  • Wittmann F et al (2020) Composição florística, diversidade, fitogeografia e evolução das florestas alagáveis amazônicas. In: Junk WJ, Piedade MTF, Wittmann F, Schongart J (eds) Várzeas Amazônicas: desafios para um manejo sustentável, vol 300. Editora do INPA, Manaus, pp 122–142

    Google Scholar 

  • Woods CL, Cardelús CL, DeWalt SJ (2015) Microhabitat associations of vascular epiphytes in a wet tropical forest canopy. J Ecol 103(2):421–430

    Article  Google Scholar 

  • Zhao M, Geekiyanage N, Xu J, Khin MM, Nurdiana DR, Paudel E, Harrison RD (2015) Structure of the epiphyte community in a tropical montane forest in SW China. PLoS ONE 10(4):e0122210. https://doi.org/10.1371/journal.pone.0122210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zotz G, Vollrath B (2003) The epiphyte vegetation of the palm Socratea exorrhiza-correlations with tree size, tree age and bryophyte cover. J Trop Ecol 19(1):81–90

    Article  Google Scholar 

  • Zotz G, Schultz S (2008) The vascular epiphytes of a lowland forest in Panama—species composition and spatial structure. Plant Ecol 195:131–141

    Article  Google Scholar 

  • Zotz G (2016) Plants on plants-the biology of vascular epiphytes. Vol 15. Springer International Publishing, Cham, p. 282

Download references

Acknowledgements

We would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-CAPES and the Programa de Pós-graduação em Botânica do Instituto Nacional de Pesquisas da Amazônia—INPA. We thank CNPq for financing the research projects: the Long-term Ecological Research Network–PELD (CNPq/CAPES/ FAPS/BC, NEWTON PROGRAM FUND, grant number 441590/2016-0; MCTI/CNPq/FAPs, grant number 403792/2012-6). This study was financed by the Fundação de Amparo á Pesquisa do Estado do Amazonas (FAPEAM) (FIXAM/FAPEAM, grant number 017/2914 and PELD/FAPEAM, grant number 062.01357/2017), by the EU Project BiodivERsA—Clambio (BMBF 16LC2025A), and by the Technical/Scientific Cooperation Agreement between INPA and the Max-Planck-Society. We also thank Kleuto Moraes and José Ferreira Ramos for all their support in the field and in the identification of tree species.

Funding

The work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil, 130805/2020-3.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the conception and writing of the manuscript. JSS, MTFP and ACQ prepared the research project. Field collection and statistical analysis were carried out by JSS, VPK, and ACQ. The first version of the manuscript was written by JSS and all the authors reviewed, drafted and critically commented on all versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Jeisiane Santos da Silva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Ed Witkowski.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Supplementary file2 (DOCX 36 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, J.S., Piedade, M.T.F., Klein, V.P. et al. Large diameters and tree bark physical attributes drive vascular epiphyte-phorophyte relationships in Amazonian black-water floodplain forest. Plant Ecol 225, 163–173 (2024). https://doi.org/10.1007/s11258-023-01387-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-023-01387-1

Keywords

Navigation