Skip to main content
Log in

Cascading effects of climate change: new advances in drivers and shifts of tropical reproductive phenology

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Tropical forests were long viewed as relatively stable systems, with little biologically important variation in climate. However, in recent years, accumulating evidence has suggested that tropical forests vary widely both in climate and phenology, that climate and phenology are inextricably linked, and that tropical forests increasingly display the effects of climate change. It is critically important to understand these climate-phenology interactions to be able to predict the cascading impacts on resource availability that will affect wildlife. There are many important and unanswered questions regarding how the mechanistic drivers and proximate cues of tropical forest reproductive phenology will vary in response to environmental change. Addressing these questions remains a huge challenge due to a paucity of long-term comparable data that hampers our ability to connect observed phenology patterns with fundamental theory. In this review, we highlight ten focal papers that have advanced our ability to identify phenological patterns, improved our understanding of the drivers of flowering and fruiting, and have innovatively linked fruiting patterns with impacts on wildlife diet, reproduction, and survival. We end with a call for increased collaboration among forest and wildlife ecologists, theoretical ecologists, meteorologists, and decision-makers to advance and apply phenological research in the tropics and reduce the negative impact of climate change on vital ecological functions, and services, of tropical forest ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References:

  • Abernethy K, Bush ER, Forget PM, Mendoza I, Morellato LPC (2018) Current issues in tropical phenology: a synthesis. Biotropica 50(3):477–482

    Article  Google Scholar 

  • Adamescu GS, Plumptre AJ, Abernethy KA, Polansky L, Bush ER, Chapman CA, Shoo LP, Fayolle A, Janmaat KR, Robbins MM, Ndangalasi HJ, Cordiero NJ, Gilby IC, Wittig M, Bruer T, Bruer-Ndoundou Hockemba M, Sanz CM, Morgan DB, Pusey AE, Mugerwa B, Gilagiza B, Tutin C, Ewango CEN, Sheil D, Dimoto E, Baya F, Bujo F, Ssali F, Dikangadissi JT, Jeffery K, Valenta K, White L, Masozera M, Wilson ML, Bitariho R, Ndolo Ebika ST, Gourlet-Fleury S, Mulindahabi F, Beale CM (2018) Annual cycles are the most common reproductive strategy in African tropical tree communities. Biotropica 50(3):418–430

    Article  Google Scholar 

  • Aguirre-Gutiérrez J, Malhi Y, Lewis SL, Fauset S, Adu-Bredu S, Affum-Baffoe K, Baker TR, Gvozdevaite A, Hubau W, Moore S, Peprah T (2020) Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity. Nat Commun 11(1):1–10

    Article  Google Scholar 

  • Allen K, Dupuy JM, Gei MG, Hulshof C, Medvigy D, Pizano C, Salgado-Negret B, Smith CM, Trierweiler A, Van Bloem SJ (2017) Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes? Environ Res Lett 12(2):023001

    Article  Google Scholar 

  • Ashton PS, Givnish TJ, Appanah S (1988) Staggered flowering in the Dipterocarpaceae: new insights into floral induction and the evolution of mast fruiting in the aseasonal tropics. Am Nat 132(1):44–66

    Article  Google Scholar 

  • Augspurger CK (1981) Reproductive synchrony of a tropical shrub: experimental studies on effects of pollinators and seed predators in Hybanthus prunifolius (Violaceae). Ecology 62(3):775–788

    Article  Google Scholar 

  • Bloomfield P (2000) Fourier analysis of time series: an introduction. Wiley, New York, NY

    Book  Google Scholar 

  • Borchert R (1994) Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology 75:1437–1449

    Article  Google Scholar 

  • Borchert R, Meyer SA, Felger RS, Porter-Bolland L (2004) Environmental control of flowering periodicity in Costa Rican and Mexican tropical dry forests. Glob Ecol Biogeogr 13:409–425

    Article  Google Scholar 

  • Borchert R, Calle Z, Strahler AH, Baertschi A, Magill RE, Broadhead JS, Kamau J, Njoroge J, Muthuri C (2015) Insolation and photoperiodic control of tree development near the equator. New Phytol 205:7–13

    Article  PubMed  Google Scholar 

  • Brummitt N, Regan EC, Weatherdon LV, Martin CS, Geijzendorffer IR, Rocchini D, Gavish Y, Haase P, Marsh CJ, Schmeller DS (2017) Taking stock of nature: Essential biodiversity variables explained. Biol Cons 213:252–255

    Article  Google Scholar 

  • Bush ER, Abernethy KA, Jeffery K, Tutin C, White L, Dimoto E, Dikangadissi JT, Jump AS, Bunnefeld N (2017) Fourier analysis to detect phenological cycles using long-term tropical field data and simulations. Methods Ecol Evol 8(5):530–540

    Article  Google Scholar 

  • Bush ER, Whytock RC, Bahaa-El-Din L, Bourgeois S, Bunnefeld N, Cardoso AW, Dikangadissi JT, Dimbonda P, Dimoto E, Edzang Ndong J, Jeffery KJ, Abernethy K (2020) Long-term collapse in fruit availability threatens Central African forest megafauna. Science 370(6521):1219–1222

    Article  CAS  PubMed  Google Scholar 

  • Bush ER, Jeffery K, Bunnefeld N, Tutin C, Musgrave R, Moussavou G, Mihindou V, Malhi Y, Lehmann D, Ndong JE, Makaga L (2020) Rare ground data confirm significant warming and drying in western equatorial Africa. PeerJ 8:e8732

    Article  PubMed  PubMed Central  Google Scholar 

  • Butt N, Seabrook L, Maron M, Law BS, Dawson TP, Syktus J, McAlpine CA (2015) Cascading effects of climate extremes on vertebrate fauna through changes to low-latitude tree flowering and fruiting phenology. Glob Change Biol 21(9):3267–3277

    Article  Google Scholar 

  • Calle Z, Schlumpberger BO, Piedrahita L, Leftin A, Hammer SA, Tye A, Borchert R (2010) Seasonal variation in daily insolation induces synchronous bud break and flowering in the tropics. Trees 24:865–877

    Article  Google Scholar 

  • Campos FA, Kalbitzer U, Melin AD, Hogan JD, Cheves SE, Murillo-Chacon E, Guadamuz A, Myers MS, Schaffner CM, Jack KM, Aureli F, Fedigan LM (2020) Differential impact of severe drought on infant mortality in two sympatric neotropical primates. Royal Soc Open Sci 7(4):200302

    Article  Google Scholar 

  • Chapman C, Wrangham RW, Chapman LJ, Kennard DK, Zanne AE (1999) Fruit and flower phenology at two sites in Kibale National Park, Uganda. J Trop Ecol 15:189–211

    Article  Google Scholar 

  • Chapman CA, Chapman LJ, Struhsaker TT, Zanne AE, Clark CJ, Poulsen JR (2005) A long-term evaluation of fruiting phenology : Importance of climate change. J Trop Ecol 21(1):31–45

    Article  Google Scholar 

  • Chapman CA, Valenta K, Bonnell TR, Brown KA, Chapman LJ (2018) Solar radiation and ENSO predict fruiting phenology patterns in a 15-year record from Kibale National Park, Uganda. Biotropica 50:384–395

    Article  Google Scholar 

  • Chechina M, Hamann A (2019) Climatic drivers of dipterocarp mass-flowering in South-East Asia. J Trop Ecol 35(3):108–117

    Article  Google Scholar 

  • Chen Y-Y, Satake A, Sun I-F, Kosugi Y, Tani M, Numata S, Hubbell SP, Fletcher C, Supardi MNN, Wright SJ (2018) Species-specific flowering cues among general flowering Shorea species at the Pasoh Research Forest, Malaysia. J Ecol 106:586–598

    Article  CAS  Google Scholar 

  • Chuine I, Beaubien EG (2001) Phenology is a major determinant of tree species range. Ecol Lett 4(5):500–510

    Article  Google Scholar 

  • Chuine I, Régnière J (2017) Process-based models of phenology for plants and animals. Annu Rev Ecol Evol Syst 48:159–182

    Article  Google Scholar 

  • Chuine I, Cour P, Rousseau DD (1999) Selecting models to predict the timing of flowering of temperate trees: implications for tree phenology modelling. Plant Cell Environ 22(1):1–13

    Article  Google Scholar 

  • Corlett RT (2016) The impacts of droughts in tropical forests. Trends Plant Sci 21(7):584–593

    Article  CAS  PubMed  Google Scholar 

  • Croat TB (1978) Flora of Barro Colorado Island. Stanford University Press, USA. p, p 956

    Google Scholar 

  • Davies SJ, Palmiotto PA, Ashton PS, Lee HS, Lafrankie JV (1998) Comparative ecology of 11 sympatric species of Macaranga in Borneo: tree distribution in relation to horizontal and vertical resource heterogeneity. J Ecol 86:662–673

    Article  Google Scholar 

  • del-Val, E.K., Armesto, J.J., Barbosa, O., Christie, D.A., Gutiérrez, A.G., Jones, C.G., Marquet, P.A. and Weathers, K.C. (2006) Rain forest islands in the Chilean semiarid region: fog-dependency, ecosystem persistence and tree regeneration. Ecosystems 9(4):598–608

    Article  Google Scholar 

  • Detto M, Wright SJ, Calderón O, Muller-Landau HC (2018) Resource acquisition and reproductive strategies of tropical forest in response to the El Niño-Southern Oscillation. Nat Commun 9(1):1–8

    Article  CAS  Google Scholar 

  • Dommo A, Philippon N, Vondou DA, Sèze G, Eastman R (2018) The June–September low cloud cover in western central Africa: mean spatial distribution and diurnal evolution, and associated atmospheric dynamics. J Clim 31(23):9585–9603

    Article  Google Scholar 

  • Dray S et al (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). – Ecol. Model 196:483–493

    Article  Google Scholar 

  • Ellis KM, Abondano LA, Montes-Rojas A, Link A, Di Fiore A (2021) Reproductive seasonality in two sympatric primates (Ateles belzebuth and Lagothrix lagotricha poeppigii) from Amazonian Ecuador. Am J Primatol 83(1):e23220

    Article  PubMed  Google Scholar 

  • Fauset S, Baker TR, Lewis SL, Feldpausch TR, Affum-Baffoe K, Foli EG, Hamer KC, Swaine MD (2012) Drought-induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecol Lett 15:1120–1129

    Article  PubMed  Google Scholar 

  • Federman S, Sinnott-Armstrong M, Baden AL, Chapman CA, Daly DC, Richard AR, Valenta K, Donoghue MJ (2017) The paucity of frugivores in Madagascar may not be due to unpredictable temperatures or fruit resources. PLoS ONE 12(1):e0168943

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng X, Porporato A, Rodriguez-Iturbe I (2013) Changes in rainfall seasonality in the tropics. Nat Clim Chang 3(9):811–815

    Article  Google Scholar 

  • García-Santos G, Marzol MV, Aschan G (2004) Water dynamics in a laurel montane cloud forest in the Garajonay National Park (Canary Islands, Spain). Hydrol Earth Syst Sci 8(6):1065–1075

    Article  Google Scholar 

  • Garwood NC, Metz MR, Queenborough SA, Persson V, Wright SJ, Burslem DF, Zambrano M, Valencia R (2023) Seasonality of reproduction in an ever-wet lowland tropical forest in Amazonian Ecuador. Ecology. https://doi.org/10.1002/ecy.4133

    Article  PubMed  Google Scholar 

  • Gaston KJ (2000) Global patterns in biodiversity. Nature 405(6783):220–227

    Article  CAS  PubMed  Google Scholar 

  • Graham EA, Mulkey SS, Kitajima K, Phillips NG, Wright SJ (2003) Cloud cover limits net CO2 uptake and growth of a rainforest tree during tropical rainy seasons. Proc Natl Acad Sci 100(2):572–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray RE, Ewers RM (2021) Monitoring forest phenology in a changing world. Forests 12(3):297

    Article  Google Scholar 

  • Hamann A (2004) Flowering and fruiting phenology of a Philippine submontane rain forest: climatic factors as proximate and ultimate causes. J Ecol 92:24–31

    Article  Google Scholar 

  • Hanya G, Tsuji Y, Grueter CC (2013) Fruiting and flushing phenology in Asian tropical and temperate forests: implications for primate ecology. Primates 54(2):101–110

    Article  PubMed  Google Scholar 

  • Harris T, Ottaviani G, Mulligan M, Brummitt N (2022) Trait hypervolumes based on natural history collections can detect ecological strategies that are distinct to biogeographic regions. J Ecol. https://doi.org/10.1111/1365-2745.14005

    Article  Google Scholar 

  • Henkel TW, Mayor JR (2019) Implications of a long-term mast seeding cycle for climatic entrainment, seedling establishment and persistent monodominance in a Neotropical, ectomycorrhizal canopy tree. Ecol Res 34(4):472–484

    Article  Google Scholar 

  • Henkel TW, Mayor JR, Woolley LP (2005) Mast fruiting and seedling survival of the ectomycorrhizal, monodominant Dicymbe corymbosa (Caesalpiniaceae) in Guyana. New Phytol 167(2):543–556

    Article  PubMed  Google Scholar 

  • Hu J, Riveros-Iregui DA (2016) Life in the clouds: are tropical montane cloud forests responding to changes in climate? Oecologia 180(4):1061–1073

    Article  PubMed  Google Scholar 

  • Huete AR, Didan K, Shimabukuro YE, Ratana P, Saleska SR, Hutyra LR, Yang W, Nemani RR, Myneni R (2006) Amazon rainforests green-up with sunlight in dry season. Geophys Res Lett. https://doi.org/10.1029/2005GL025583

    Article  Google Scholar 

  • Jones FA, Chen J, Weng GJ, Hubbell SP (2005) A genetic evaluation of seed dispersal in the neotropical tree Jacaranda copaia (Bignoniaceae). Am Nat 166(5):543–555

    Article  CAS  PubMed  Google Scholar 

  • Knoben WJ, Woods RA, Freer JE (2019) Global bimodal precipitation seasonality : A systematic overview. Int J Climatol 39(1):558–567

    Article  Google Scholar 

  • Lasky JR, Uriarte M, Muscarella R (2016) Synchrony, compensatory dynamics, and the functional trait basis of phenological diversity in a tropical dry forest tree community: effects of rainfall seasonality. Environ Res Lett 11(11):115003

    Article  Google Scholar 

  • Malhi Y, Franklin J, Seddon N, Solan M, Turner MG, Field CB, Knowlton N (2020) Climate change and ecosystems: Threats, opportunities and solutions. Philos Trans R Soc B 375(1794):20190104

    Article  CAS  Google Scholar 

  • Matthews JK, Ridley A, Niyigaba P, Kaplin BA, Grueter CC (2019) Chimpanzee feeding ecology and fallback food use in the montane forest of Nyungwe National Park, Rwanda. Am J Primatol 81(4):e22971

    Article  PubMed  Google Scholar 

  • Mendoza I, Peres CA, Morellato LPC (2017) Continental-scale patterns and climatic drivers of fruiting phenology: A quantitative Neotropical review. Global Planet Change 148:227–241

    Article  Google Scholar 

  • Mendoza I, Condit RS, Wright SJ, Caubère A, Châtelet P, Hardy I, Forget P-M (2018) Inter-annual variability of fruit timing and quantity at Nouragues (French Guiana): insights from hierarchical Bayesian analyses. Biotropica 50:431–441

    Article  Google Scholar 

  • Menzel A (2002) Phenology: its importance to the global change community. Clim Change 54(4):379

    Article  Google Scholar 

  • Messeder JVS, Guerra TJ, Dáttilo W, Silveira FA (2020) Searching for keystone plant resources in fruit-frugivore interaction networks across the Neotropics. Biotropica 52(5):857–870

    Article  Google Scholar 

  • Milton K, Windsor DM, Morrison DW, Estribi MA (1982) Fruiting phenologies of two neotropical Ficus species. Ecology 63(3):752–762

    Article  Google Scholar 

  • Morellato LPC, Alberti LF, Hudson IL (2010) Applications of circular statistics in plant phenology: a case studies approach. In: Hudson IL, Keatley MR (eds) Phenological research. Springer, Dordrecht, pp 339–359

    Chapter  Google Scholar 

  • Nagy-Reis MB, Setz EZ (2017) Foraging strategies of black-fronted titi monkeys (Callicebus nigrifrons) in relation to food availability in a seasonal tropical forest. Primates 58(1):149–158

    Article  PubMed  Google Scholar 

  • Newstrom LE, Frankie GW, Baker HG (1994) A new classification for plant phenology based on flowering patterns in lowland tropical rain forest trees at La Selva, Costa Rica. Biotropica 26:141–159

    Article  Google Scholar 

  • Ngama S, Bindelle J, Poulsen JR, Hornick JL, Linden A, Korte L, Doucet JL, Vermeulen C (2019) Do topography and fruit presence influence occurrence and intensity of crop-raiding by forest elephants (Loxodonta africana cyclotis)? PLoS ONE 14(3):e0213971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norden N, Chave J, Belbenoit P, Caubère A, Châtelet P, Forget PM, Thébaud C (2007) Mast fruiting is a frequent strategy in woody species of Eastern South America. PLoS ONE 2(10):e1079

    Article  PubMed  PubMed Central  Google Scholar 

  • Numata S, Yamaguchi K, Shimizu M, Sakurai G, Morimoto A, Alias N, Noor Azman NZ, Hosaka T, Satake A (2022) Impacts of climate change on reproductive phenology in tropical rainforests of Southeast Asia. Commun Biol 5(1):311

    Article  PubMed  PubMed Central  Google Scholar 

  • Otárola MF, Sazima M, Solferini VN (2013) Tree size and its relationship with flowering phenology and reproductive output in Wild Nutmeg trees. Ecol Evol 3(10):3536–3544

    Article  PubMed  PubMed Central  Google Scholar 

  • Ouédraogo D-Y, Fayolle A, Gourlet-Fleury S, Mortier F, Freycon V, Fauvet N, Rabaud S, Cornu G, Bénédet F, Gillet J-F, Oslisly R, Doucet J-L, Lejeune P, Favier C (2016) The determinants of tropical forest deciduousness: disentangling the effects of rainfall and geology in central Africa. J Ecol 104:924–935

    Article  Google Scholar 

  • Ouédraogo D-Y, Doucet J-L, Daïnou K, Baya F, Biwolé AB, Bourland N, Fétéké F, Gillet J-F, Kouadio YL, Fayolle A (2018) The size at reproduction of canopy tree species in central Africa. Biotropica 50:465–476

    Article  Google Scholar 

  • Ouédraogo D-Y, Hardy OJ, Doucet J-L, Janssens SB, Wieringa JJ, Stoffelen P, Ilondea BA, Baya F, Beeckman H, Daïnou K, Dubiez E, Gourlet-Fleury S, Fayolle A (2020) Latitudinal shift in the timing of flowering of tree species across tropical Africa: insights from field observations and herbarium collections. J Trop Ecol 36:159–173

    Article  Google Scholar 

  • Park DS, Lyra GM, Ellison AM, Maruyama RKB, dos Reis Torquato D, Asprino RC, Cook BI, Davis CC (2023) Herbarium records provide reliable phenology estimates in the understudied tropics. J Ecol 111(2):327–337

    Article  Google Scholar 

  • Pau S, Wolkovich EM, Cook BI, Nytch CJ, Regetz J, Zimmerman JK, Wright SJ (2013) Clouds and temperature drive dynamic changes in tropical flower production. Nat Clim Chang 3(9):838–842

    Article  Google Scholar 

  • Philippon N, Cornu G, Monteil L, Gond V, Moron V, Pergaud J, Sèze G, Bigot S, Camberlin P, Doumenge C, Fayolle A (2019) The light-deficient climates of western Central African evergreen forests. Environ Res Lett 14(3):034007

    Article  CAS  Google Scholar 

  • Pillay R, Venter M, Aragon-Osejo J, González-del-Pliego P, Hansen AJ, Watson JE, Venter O (2022) Tropical forests are home to over half of the world’s vertebrate species. Front Ecol Environ 20(1):10–15

    Article  PubMed  Google Scholar 

  • Plumptre AJ (1995) The importance of “seed trees” for the natural regeneration of selectively logged tropical forest. Commonwealth Forestry Rev 74:253–258

    Google Scholar 

  • Ramaswami G, Sidhu S, Quader S (2020) Using Citizen Science to build baseline data on tropical tree phenology. BioRxiv 2:1

    Google Scholar 

  • Ratiarison S (2003) Stratégies de fructification et de consommation des fruits dans la canopée d’une forêt tropicale : une étude comparative en Guyane française. Ph.D. Université Pierre et Marie Curie, Paris VI

    Google Scholar 

  • Renner SS, Zohner CM (2018) Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu Rev Ecol Evol Syst 49:165–182

    Article  Google Scholar 

  • Sakai S (2001) Phenological diversity in tropical forests. Popul Ecol 43:77–86

    Article  Google Scholar 

  • Sakai S, Kitajima K (2019) Tropical phenology: Recent advances and perspectives. Ecol Res 34:50–54

    Article  Google Scholar 

  • Schreel JD, Steppe K (2020) Foliar water uptake in trees: negligible or necessary? Trends Plant Sci 25(6):590–603

    Article  CAS  PubMed  Google Scholar 

  • Silvertown JW (1980) The evolutionary ecology of mast seeding in trees. Biol J Lin Soc 14(2):235–250

    Article  Google Scholar 

  • Singh KP, Kushwaha CP (2005) Emerging paradigms of tree phenology in dry tropics. Curr Sci 89:964–975

    Google Scholar 

  • Singh KP, Kushwaha CP (2016) Deciduousness in tropical trees and its potential as indicator of climate change: A review. Ecol Ind 69:699–706

    Article  Google Scholar 

  • Staggemeier VG, Cazetta E, Morellato LPC (2017) Hyperdominance in fruit production in the Brazilian Atlantic rain forest: the functional role of plants in sustaining frugivores. Biotropica 49(1):71–82

    Article  Google Scholar 

  • Staggemeier VG, Gutiérrez Camargo MGG, Diniz-Filho JAF, Freckleton R, Jardim L, Morellato LPC (2020) The circular nature of recurrent life cycle events: a test comparing tropical and temperate phenology. J Ecol 108:393–404

    Article  Google Scholar 

  • Sullivan MJ, Talbot J, Lewis SL, Phillips OL, Qie L, Begne SK, Chave J, Cuni-Sanchez A, Hubau W, Lopez-Gonzalez G, Miles L (2017) Diversity and carbon storage across the tropical forest biome. Sci Rep 7(1):39102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor SD, Meiners JM, Riemer K, Orr MC, White EP (2019) Comparison of large-scale citizen science data and long-term study data for phenology modeling. Ecology 100(2):e02568

    Article  PubMed  Google Scholar 

  • Ter Steege H, Persaud CA (1991) The phenology of Guyanese timber species: a compilation of a century of observations. Vegetatio 95(2):177–198

    Article  Google Scholar 

  • Terborgh JW (2015) Toward a trophic theory of species diversity. Proc Natl Acad Sci 112(37):11415–11422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tutin CEG, Fernandez M (1993) Relationships between minimum temperature and fruit production in some tropical forest trees in Gabon. J Trop Ecol 1993:241–248

    Article  Google Scholar 

  • van Schaik CP, Terborgh JW, Wright SJ (1993) The phenology of tropical forests: adaptive significance and consequences for primary consumers. Annu Rev Ecol Evol Syst 24:353–377

    Article  Google Scholar 

  • Wich SA, Van Schaik CV (2000) The impact of El Nino on mast fruiting in Sumatra and elsewhere in Malesia. J Trop Ecol 16(4):563–577

    Article  Google Scholar 

  • Williamson GB, Ickes K (2002) Mast fruiting and ENSO cycles–does the cue betray a cause? Oikos 97(3):459–461

    Article  Google Scholar 

  • Willis CG, Ellwood ER, Primack RB, Davis CC, Pearson KD, Gallinat AS, Yost JM, Nelson G, Mazer SJ, Rossington NL, Sparks TH (2017) Old plants, new tricks: Phenological research using herbarium specimens. Trends Ecol Evol 32(7):531–546

    Article  PubMed  Google Scholar 

  • Wright PC (1999) Lemur traits and Madagascar ecology: coping with an island environment. Am J Phys Anthropol 110(S29):31–72

    Article  Google Scholar 

  • Wright SJ, Calderón O (2006) Seasonal, El Nino and longer term changes in flower and seed production in a moist tropical forest. Ecol Lett 9:35–44

    Article  CAS  PubMed  Google Scholar 

  • Wright SJ, Calderón O (2018) Solar irradiance as the proximate cue for flowering in a tropical moist forest. Biotropica 50(3):374–383

    Article  Google Scholar 

  • Wright SJ, Van Schaik CP (1994) Light and the phenology of tropical trees. Am Nat 143:192–199

    Article  Google Scholar 

  • Wright SJ, Carrasco C, Calderon O, Paton S (1999) The El Niño Southern Oscillation, variable fruit production, and famine in a tropical forest. Ecology 80(5):1632–1647

    Google Scholar 

  • Wright SJ, Jaramillo MA, Pavon J, Condit R, Hubbell SP, Foster RB (2005) Reproductive size thresholds in tropical trees: variation among individuals, species and forests. J Trop Ecol 21:307–315

    Article  Google Scholar 

  • Wright SJ, Calderón O, Muller-Landau HC (2019) A phenology model for tropical species that flower multiple times each year. Ecol Res 34(1):20–29

    Article  Google Scholar 

  • Wu J, Guan K, Hayek M, Restrepo-Coupe N, Wiedemann KT, Xu X, Wehr R, Christoffersen BO, Miao G, da Silva R, de Araujo AC, Oliviera RC, Camargo PB, Monson RK, Huete AR, Saleska SR (2017) Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to interannual timescales. Glob Change Biol 23:1240–1257

    Article  Google Scholar 

  • Yeang HY (2007) The sunshine-mediated trigger of synchronous flowering in the tropics: the rubber tree as a study model. New Phytol 176:730–735

    Article  PubMed  Google Scholar 

  • Zalamea PC, Munoz F, Stevenson PR, Paine CT, Sarmiento C, Sabatier D, Heuret P (2011) Continental-scale patterns of Cecropia reproductive phenology: evidence from herbarium specimens. Proc R Soc Lond B Biol Sci. https://doi.org/10.1098/rspb.2010.2259

    Article  Google Scholar 

  • Zimmerman JK, Wright SJ, Calderón O, Pagan MA, Paton S (2007) Flowering and fruiting phenologies of seasonal and aseasonal neotropical forests: the role of annual changes in irradiance. J Trop Ecol 23:231–251

    Article  Google Scholar 

  • Zwolak R, Celebias P, Bogdziewicz M (2022) Global patterns in the predator satiation effect of masting: A meta-analysis. Proc Natl Acad Sci 119(11):e2105655119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

MKS was supported by the National Science Foundation Graduate Research Fellowship and the Lewis B. and Dorothy Cullman Program New York Botanical Garden Graduate Research Fellowship. JV was supported by the Institute for Biospheric Studies, Yale University, G. Evelyn Hutchinson Environmental Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

MKS wrote the original draft of the manuscript text. SQ provided supervision. All authors contributed to the conceptualization of the manuscript, and review and editing of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Megan K. Sullivan.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Scott Meiners.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sullivan, M.K., Fayolle, A., Bush, E. et al. Cascading effects of climate change: new advances in drivers and shifts of tropical reproductive phenology. Plant Ecol 225, 175–187 (2024). https://doi.org/10.1007/s11258-023-01377-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-023-01377-3

Keywords

Navigation