Skip to main content
Log in

Felling the giants: integral projection models indicate adult management to control an exotic invasive palm

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Population models are helpful for understanding demographic trends in invasive plants and crucial in defining effective management actions. Here, we assessed the dynamics of three populations of the invasive palm Roystonea oleracea on an island in the Atlantic Forest, Brazil. We aimed to verify variations in the life cycle parameters (survival, growth, fecundity) of individuals; to evaluate population growth rates (λ); and to understand which vital rates most impact λ. In 2015, we established plots (40 × 40 m) in areas occupied by R. oleraceae and tagged (numbered aluminum tags) and measured the diameter at ground level (DGL) of all palms in the plots. We conducted an annual census in each population in 2016, 2017, and 2018 where all palms were relocated and measured again. We used Integral Projection Models to verify differences in life cycle parameters and to calculate λ, and prospective analyses of elasticity to verify the contribution of each vital rates on λ. Palms with smaller DGL (< 10 mm) had lower rates of survival or remained in stasis, while palms with larger DGL (> 10 mm) had higher survival rates, increased in size, or reproduced. The λ values were different between populations: Population 1 was decreasing, Population 2 was increasing, and Population 3 was stable. Survival and growth of palms with larger diameters were the vital rates that most impacted λ. Management strategies to eliminate palms with DGL > 400 mm are essential to reduce the λ of the species and to control their spread to new locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguiar AV, Tabarelli M (2010) Edge effects and seedling bank depletion: the role played by the early successional palm Attalea oleifera (Arecaceae) in the Atlantic Forest. Biotropica 42:158–166

    Google Scholar 

  • Alho CJR, Schneider M, Vasconcellos LA (2002) Degree of threat to the biological diversity in the Ilha Grande State Park (RJ) and guidelines for conservation. Braz J Bio 62:375–385

    CAS  Google Scholar 

  • Andreazzi CS, Pires AS, Fernandez FAS (2009) Mamíferos e palmeiras Neotropicais: interações em paisagens fragmentadas. Oecologia Brasiliensis 13:554–574

    Google Scholar 

  • Andreazzi CS, Pimenta CS, Pires AS, Fernandez FAZ, Oliveira-Santos LG, Menezes JFS (2012) Increased productivity and reduced seed predation favor a large-seeded palm in small Atlantic forest fragments. Biotropica 44:237–245

    Google Scholar 

  • Bartomeus I, Vilà M, Santamaria L (2008) Contrasting effects of invasive plants in plant-pollinator networks. Oecologia 155:761–770

    PubMed  Google Scholar 

  • Beck H, Terborgh J (2002) Groves versus isolates: how spatial aggregation of Astrocaryum murumuru palms affects seed removal. J Trop Ecol 18:275–288

    Google Scholar 

  • Blackburn TM, Pysek P, Bacher S, Carlton JT, Duncan RP, Jarosık V, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339

    PubMed  Google Scholar 

  • Bonadie WA (1998) The ecology of Roystonea oleracea palm swamp Forest in the Nariva Swamp (Trinidad). Wetlands 18:249–255

    Google Scholar 

  • Callado CH, Barros AAM, Ribas LA, Albarello N, Gagliardi R, Jascone CE (2009) Flora e Cobertura Vegetal. In: Bastos M, Callado CH (eds) O Ambiente da Ilha Grande. Centro de Estudos Ambientais e Desenvolvimento Sustentável, CEADS, Rio de Janeiro, pp 91–161

    Google Scholar 

  • Catford JA, Baumgartner JB, Vesk PA, White M, Buckley YM, McCarthy MA (2016) Disentangling the four demographic dimensions of species invasiveness. J Ecol 104:1745–1758

    Google Scholar 

  • Caswell H (2001) Matrix population models: construction, analysis, and interpretation. Sunderland, Massachusetts

    Google Scholar 

  • Christianini AV (2006) Fecundidade, dispersão e predação de sementes de Archontophoenix cunninghamiana H. Wendl. & Drude, uma palmeira invasora da Mata Atlântica. Rev Bras Bot 29:587–594

    Google Scholar 

  • Collonello G, Allende JRG, Molina IM (2016) Roystonea oleracea (Arecaceae) communities in Venezuela. Bot J Linn Soc 182:439–450

    Google Scholar 

  • Comita LS, Engelbrecht BMJ (2009) Seasonal and spatial variation in water availability drive habitat associations in a tropical forest. Ecology 90:2755–2765

    PubMed  Google Scholar 

  • Condé TM, Silva F, Souza AL, Leite HG, Garcia EA, Costa WS, Chaves AS, Lopes PB (2016) Exotic palms threatens native palms: a risk to plant biodiversity of Atlantic Forest. Rev Árvore 42(2):e4202016

    Google Scholar 

  • Crooks JA, Soulé ME (1999) Lag times in population explosions of invasive species: causes and implications. In: Sandlund OT, Schei PJ, Viken A (eds) Invasive species and biodiversity management. Kluwer Academic Publishers, Dodrecht, pp 103–125

    Google Scholar 

  • D’Elboux RMM (2006) Uma promenade nos trópicos: os barões do café sob as palmeiras-imperiais, entre o Rio de janeiro e são Paulo. Anais Museu Paulista 14:193–250

    Google Scholar 

  • Dean WA (1989) Botânica e a política imperial: introdução e adaptação de plantas no Brasil Colonial e Imperial. Inst Estudos Avançados (USP) 17:1–20

    Google Scholar 

  • Delnatte C, Meyer J-Y (2012) Plant introduction, naturalization, and invasion in French Guiana (South America). Biol Invasions 14:915–927

    Google Scholar 

  • DeWalt S (2006) Population dynamics and potencial for biological control of an exotic invasive shrub in Hawaiian rainforest. Biol Invasions 8:1145–1158

    Google Scholar 

  • Dislich R, Kisser N, Pivello V (2002) A invasão de um fragmento florestal em São Paulo (SP) pela palmeira australiana Archontophoenix cunninghamiana H. Wendl & Drude. Rev Bras Bot 25:55–64

    Google Scholar 

  • Doak DF, Morris WF (2010) Demographic compensation and tipping points in climate-induced range shifts. Nature 467:959–962

    CAS  PubMed  Google Scholar 

  • Easterling MR, Ellner SP, Dixon PM (2000) Size-specific sensitivity: applying a new structured population model. Ecology 81:694–708

    Google Scholar 

  • Ellner SP, Rees M (2006) Integral projection models for species with complex demography. Am Nat 167:410–428

    PubMed  Google Scholar 

  • IBGE (2012) Manual técnico da vegetação brasileira. 2 ed. Manuais Técnicos em Geociências 1. IBGE, Rio de Janeiro

  • INEA (2013) Parque Estadual da Ilha Grande: plano de manejo (fase 2)/resumo executivo. Instituto Estadual do Ambiente, Rio de Janeiro

    Google Scholar 

  • Galetti M, Aleixo A (1998) Effects of palm heart harvesting on avian frugivores in the Atlantic rain forest of Brazil. J Appl Ecol 35:286–293

    Google Scholar 

  • Galetti M et al (2013) Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340:1086–1090

    CAS  PubMed  Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic Press, New York

    Google Scholar 

  • Henderson A, Galeano G, Bernal R (1995) Field guide to the palms of the Americas. Princeton University Press, New Jersey

    Google Scholar 

  • Holmquist JG, Schmidt-Gengenbach J, Slaton MR (2011) Influence of invasive palms on terrestrial arthropod assemblages in desert spring habitat. Biol Conserv 144:518–525

    Google Scholar 

  • Iles DT, Salguero-Gomez R, Adler PB, Koons DN (2016) Linking transient dynamics and life history to biological invasion success. J Ecol 104:399–408

    Google Scholar 

  • IUCN (2018) Guidelines for invasive species planning and management on islands. IUCN, Cambridge

    Google Scholar 

  • Junk WJ, Piedade MTF, Lourival R et al (2013) Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquat Conserv 24:5–22

    Google Scholar 

  • Kerr NZ, Baxter PWJ, Salguero-Gomez R, Wardle GM, Buckley YM (2016) Prioritizing management actions for invasive populations using cost, efficacy, demography and expert opinion for 14 plant species world-wide. J Appl Ecol 53:305–316

    PubMed  PubMed Central  Google Scholar 

  • Kowarik I (1995) Time lags in biological invasions with regard to the success and failure of alien species. In: Pysek P, Prach K, Rejmanek M, Wade M (eds) Plant invasions: general aspects and special problems. SPB Academic, Amsterdam, pp 15–38

    Google Scholar 

  • Kueffer C, Daehler CC, Torres-Santana CW, Lavergne C, Meyer JY, Otto R, Silva L (2010) A global comparison of plant invasions on oceanic islands. Perspect Plant Ecol 12:145–161

    Google Scholar 

  • Lediuk KD, Damascos MA, Puntieri JG, Curth MIT (2016) Population dynamics of an invasive tree, Sorbus aucuparia, in the understory of a Patagonian forest. Plant Ecol 217:899–911

    Google Scholar 

  • Levin SC, Crandall RM, Knight TM (2019) Population projection models for 14 alien plant species in the presence and absence of aboveground competition. Ecology 100:e02681

    PubMed  Google Scholar 

  • Lommen TE, Jongejans E, Leitsch-Vitalos M, Tokarska-Guzik B, Zalai M, Müller-Schärer H, Karrer G (2018) Time to cut: population models reveal how to mow invasive common ragweed cost-effectively. NeoBiota 39:53–78

    Google Scholar 

  • Lorenzi H, Souza HM, Costa JTM, Cerqueira LSC, Ferreira E (2004) Palmeiras brasileiras e exóticas cultivadas. Nova Odessa, São Paulo

    Google Scholar 

  • Matos DMS (2000) Herbivory and palnt demography: a case study in a fragment of semi-decidous forest in Brazil. J Trop Ecol 16:159–165

    Google Scholar 

  • McKinney AM, Goodell K (2010) Plant–pollinator interactions between an invasive and native plant vary between sites with different flowering phenology. Plant Ecol 212:1025–1035

    Google Scholar 

  • Merow C, Dahlgren JP, Metcalf CJE, Childs DZ, Evans MEK, Jongejans E, Record S, McMahon SM (2014) Advancing population ecology with integral projection models: a practical guide. Methods Ecol Evol 5:99–110

    Google Scholar 

  • Metcalf C, McMahon SM, Salguero-Gomez R, Jongejans E (2013) IPM-pack: an R package for integral projection models. Methods Ecol Evol 4:195–200

    Google Scholar 

  • Meyer JY, Lavergne C, Hodel DR (2008) Time bombs in gardens: invasive ornamental palms in tropical islands, with emphasis on French Polynesia (Pacific Ocean) and the Mascarenes (Indian Ocean). Palms 52:23–35

    Google Scholar 

  • Morris WF, Doak DF (2002) Quantitative Conservation Biology. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Nychka D, Furrer R, Paige J, Sain S (2017) Fields: tools for spatial data. https://doi.org/10.5065/D6W957CT

  • Oliveira RR (2002) Ação antrópica e resultantes sobre a estrutura e composição da Mata Atlântica na Ilha Grande, RJ. Rodriguésia 53:33–58

    Google Scholar 

  • Oliveira AR, Teixeira ML, Reis R (2009) As palmeiras-imperiais do Jardim Botânico. Dantes Editora, Rio de Janeiro

    Google Scholar 

  • Pascarella JB, Horvitz CC (1998) Hurricane disturbance and the population dynamics of a tropical understory shrub: megamatrix elasticity analysis. Ecology 79:547–563

    Google Scholar 

  • Pollnac FW, Maxwell BD, Taper ML, Rew LJ (2014) The demography of native and non-native plant species in mountain systems: Examples in the Greater Yellowstone Ecosystem. Popul Ecol 56:81–95

    Google Scholar 

  • Portela RCQ, Bruna EM, Santos FA (2010) Are protected areas really protecting populations? A test with an Atlantic rain forest palm. Trop Conserv Sci 3:361–372

    Google Scholar 

  • Pyšek P, Jarošik V, Hulme PE, Pergl J, Hejda M, Schaffner U, Vilà M (2012) A global assessment of alien invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob Chang Biol 18:1725–1737

    PubMed Central  Google Scholar 

  • Raíces DSL, Ferreira PM, Mello JHF, Bergallo HG (2017) Smile, you are on camera or in a live trap! The role of mammals in dispersion of jackfruit and native seeds in Ilha Grande State Park, Brazil. Nat Conserv Res 2:78–89

    Google Scholar 

  • Ramula S (2014) Linking vital rates to invasiveness of a perennial herb. Oecologia 174:1255–1264

    PubMed  Google Scholar 

  • Ramula S, Knight TM, Burns JH, Buckley YM (2008) General guidelines for invasive plant management based on comparative demography of invasive and native plant populations. J Appl Ecol 45:1124–1133

    Google Scholar 

  • Ramula S, Rees M, Buckley YM (2009) Integral projection models perform better for small demographic data sets than matrix population models: a case study of two perennial herbs. J Appl Ecol 46:1048–1105

    Google Scholar 

  • Rejmánek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77:1655–1660

    Google Scholar 

  • Rumlerová Z, Vilà M, Pergl J, Nentwig W, Pyšek P (2016) Scoring environmental and socioeconomic impacts of alien plants invasive in Europe. Biol Invasions 18:3697–3711

    Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker MI, Thompson JN, Weller SG (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Google Scholar 

  • Sarthou C (1965) Relíquias da cidade do Rio de Janeiro. Atheneu, Rio de Janeiro

    Google Scholar 

  • Scarano FR (2006) Plant community structure and function in a swamp forest within the Atlantic rain forest complex: a synthesis. Rodriguésia 57:491–502

    Google Scholar 

  • Simberloff D (2011) How common are invasion-induced ecosystem impacts? Biol Invasions 13:1255–1268

    Google Scholar 

  • Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions 1:21–32

    Google Scholar 

  • Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B, Garcia-Berthou E, Pascal M, Pysek P, Sousa R, Tabacchi E, Vilà M (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66

    PubMed  Google Scholar 

  • Souza AC, Portela RQ, De Mattos EA (2018) Demographic processes limit upward altitudinal range expansion in a threatened tropical palm. Ecol Evol 8:12238–12249

    PubMed  PubMed Central  Google Scholar 

  • Strayer DL, D’Antonio CM, Essl F, Fowler MS, Geist J, Hilt S et al (2017) Boom-bust dynamics in biological invasions: towards an improved application of the concept. Ecol Lett 20:1337–1350

    PubMed  Google Scholar 

  • Stubben CJ, Milligan BG (2007) Estimating and analyzing demographic models using the popbio Package in R. J Stat Softw 22:11

    Google Scholar 

  • Svenning JC (2002) Non-native ornamental palms invade a secondary tropical forest in Panama. Palms 46:81–86

    Google Scholar 

  • Traveset A, Richardson DM (2006) Biological invasions as disruptors of plant reproductive mutualisms. Trends Ecol Evol 21:208–216l

    PubMed  Google Scholar 

  • Warren RJ, Labatore A, Candeias M (2017) Allelopathic invasive tree (Rhamnus cathartica) alters native plant communities. Plant Ecol 218:1233–1241

    Google Scholar 

  • Wood S, Scheipl F, Wood MS (2017) Package ‘gamm4.’ Am Stat 45:339

    Google Scholar 

  • Zona S, Henderson A (1989) A review of animal-mediated seed dispersal of palms. Selbyana 11:6–21

    Google Scholar 

  • Zucaratto R, Pires AS (2014) The exotic palm Roystonea oleracea (Jacq.) O. F. Cook (Arecaceae) on an island within the Atlantic Forest Biome: naturalization and influence on seedling recruitment. Acta Bot Bras 28:417–421

    Google Scholar 

  • Zucaratto R, Santos GS, Pires AS, Bergallo HG (2020) Coalescing past and present to predict the future: historical attributes and current situation of a non-native palm on an island in the Atlantic. J Coast Conserve 24:20

    Google Scholar 

  • Zuidema PA, Jongejans E, Chien PD, During HJ, Schieving F (2010) Integral Projection Models for trees: a new parameterization method and a validation of model output. J Ecol 98:345–355

    Google Scholar 

Download references

Aknowledgements

This study was financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Financing code 001, FAPERJ (CNE-26/202.757/2017), CNPq (307781/2014-3) and by Prociência/UERJ. We are grateful to the Center of Environmental Studies and Sustainable Development (Centro de Estudos Ambientais e Desenvolvimento Sustentável—CEADS) and to the Rio de Janeiro State Institute of Environment (Instituto Estadual do Meio Ambiente do Rio de Janeiro—INEA) for logistical support. We thank all the people who contributed to this study, especially Gabriel Silva Santos and Eduardo Teles Barbosa Mendes for the crucial support in R software, Vânia Gomes Soares for helping with data collection in the field, Dr. Silvia Ziller and the two anonymous reviewers who gave an important improvement to the manuscript.

Funding

Funding was provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Grant No. 001), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (Grant No. CNE-26/202.757/2017), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant No. 307781/2014-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Zucaratto.

Additional information

Communicated by Hsiao-Hsuan Wang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 338 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zucaratto, R., Santos Pires, A., Godoy Bergallo, H. et al. Felling the giants: integral projection models indicate adult management to control an exotic invasive palm. Plant Ecol 222, 93–105 (2021). https://doi.org/10.1007/s11258-020-01090-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-020-01090-5

Keywords

Navigation