Skip to main content
Log in

Predicting plant trait similarity along environmental gradients

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Plant traits affect the success or failure of plants to establish, grow, and reproduce. Although we have an increased understanding of certain individual plant traits and their relative effects on performance and fitness, it is a challenge to predict relative similarity of traits between neighbouring plants. Assembly rules suggest that abiotic filters will restrict the range of viable strategies, thus creating a community of plants that share a similar suite of traits. In contrast, limiting similarity predicts that segregation of species’ resource use will lead to character displacement. What is the relative strength of these two processes and do they differ depending on site condition? We know that trait similarity of plants can vary with site productivity and disturbance. In this study, we investigate the interaction of these two ecological factors and how they affect plant trait similarity. We find support for the hypothesis that trait convergence occurs at low productivity/high disturbance and high productivity/low disturbance, and trait dispersion is most likely at intermediate levels of disturbance and productivity. The relationships among evolution, plant traits, and ecology are multivariate, hierarchical, and complex making plant traits at the ecosystem level an exciting and challenging agenda for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adler PB, Seabloom EW, Borer ET, Hillebrand H, Hautier Y, Hector A, Herpole WS, O’Halloran LR, Grace JB, Anderson TM, Bakker JD, Biederman LA, Brown CS, Buckley YM, Calabrese LB, Chu C, Cleland EE, Collins SL, Cottingham KL, Crawley MJ, Damschen EI, Davies KF, DeCrappeo NM, Fay PA, Firn J, Prater P, Gasarch EI, Gruner DS, Hagenah N, Lambers JHR, Humphries H, Jin VL, Kay AD, Kirkman KP, Klein JA, Knops JMH, La Pierre KJ, Lambrinos JG, Li W, MacDougall AS, McCulley RL, Melbourne BA, Mitchell CE, Moore JL, Mortensen B, Orrock JL, Prober SM, Pyke DA, Risch AC, Schuetz M, Smith MD, Stevens CJ, Sullivan LL, Wang G, Wragg PD, Wright JP, Yang LH (2011) Productivity is a poor predictor of plant species richness. Science 333:1750–1753

    Article  CAS  PubMed  Google Scholar 

  • Adler PB, Fajardo A, Kleinhesselink AR, Kraft NJB (2013) Trait-based tests of coexistence mechanisms. Ecol Lett 16:1294–1306

    Article  PubMed  Google Scholar 

  • Anderson MJ (2004) PERMDISP: a fortran computer program for permutational analysis of multivariate dispersions (for any two-factor anova design) using permutation tests. Department of Statistics, University of Aukland, New Zealand

  • Bennett JA, Lamb EG, Hall JC, Cardinal-McGeague WM, Cahill JF (2013) Increased competition does not lead to increased phylogenetic overdispersion in a native grassland. Ecol Lett 16:1168–1176

    Article  PubMed  Google Scholar 

  • Best RJ, Caulk NC, Stachowicz JJ (2013) Trait vs. phylogenetic diversity as predictors of competition and community composition in herbivorous marin amphipods. Eco Lett 16:72–80

    Article  CAS  Google Scholar 

  • Bilbrough C, Caldwell M (1997) Exploitation of springtime ephemeral N pulses by six great basin plant species. Ecology 78:231–243

    Google Scholar 

  • Booth R, Grime J (2003) Effects of genetic impoverishment on plant community diversity. J Ecol 91:721–730

    Article  Google Scholar 

  • Butterfield BJ (2015) Environmental filtering increases in intensity at both ends of climatic gradients, though driven by different factors, across woody vegetation types of the southwest USA. Oikos 124:1374–1382

    Article  Google Scholar 

  • Cahill J, Kembel S, Gustafson D (2005) Differential genetic influences on competitive effect and response in Arabidopsis thaliana. J Ecol 93:958–967. doi:10.1111/j.1365-2745.2005.01013.x

    Article  Google Scholar 

  • Cahill JF, Kembel SW, Lamb EG, Keddy PA (2008) Does phylogenetic relatedness influence the strength of competition among vascular plants? Perspect Plant Ecol Evol Syst 10:41–50. doi:10.1016/j.ppees.2007.10.001

    Article  Google Scholar 

  • Carlyle CN, Fraser LH, Turkington R (2011) Tracking soil temperature and moisture in a multi-factor climate experiment in temperate grassland: do climate manipulation methods produce their intended effects? Ecosystems 14:489–502

    Article  Google Scholar 

  • Cheeseman JM (1988) Mechanisms of salinity tolerance in plants. Plant Physiol 87:547–550. doi:10.1104/pp.87.3.547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chesson P (2000) General theory of competitive coexistence in spatially-varying environments. Theor Popul Biol 58:221–237

    Article  Google Scholar 

  • Coley PD, Bryant JP, Chapin FS (1985) Resource availability and plant antiherbivore defense. Science 230:895–899. doi:10.1126/science.230.4728.895

    Article  CAS  PubMed  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310. doi:10.1126/science.199.4335.1302

    Article  CAS  PubMed  Google Scholar 

  • Connell JH (1980) Diversity and the coevolution of competitors, or the ghost of competition past. Oikos 35:131–138

    Article  Google Scholar 

  • Cornwell WK, Ackerly DD (2009) Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol Monogr 79:109–126. doi:10.1890/07-1134.1

    Article  Google Scholar 

  • Coyle JR, Halliday FW, Lopez BE, Palmquist KA, Wilfahrt PA, Hurlbert AH (2014) Using trait and phylogenetic diversity to evaluate the generatliy of the stress-dominance hypothesis in eastern North American tree communities. Ecography 27:814–826

    Article  Google Scholar 

  • Cunningham S, Summerhayes B, Westoby M (1999) Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecol Monogr 69:569–588

    Article  Google Scholar 

  • Darwin C (1859) On the origin of species. John Murray, London

    Google Scholar 

  • Denslow JS (1980) Patterns of plant species diversity during succession under different disturbance regimes. Oecologia 46:18–21. doi:10.1007/BF00346960

    Article  Google Scholar 

  • Diamond JM (1979) Assembly of species communities. In: Cody ML, Diamond JM (eds) 3rd edn. The Belknap Press of Harvard University Press, Cambridge, London, p. 342

  • Diaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Funes G, Hamzehee B, Khoshnevi M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, de Torres-Espuny L, Falczuk V, Guerrero-Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martínez M, Romo-Díez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304. doi:10.1111/j.1654-1103.2004.tb02266.x

    Article  Google Scholar 

  • Fine PVA, Mesones I, Coley PD (2004) Herbivores promote habitat specialization by trees in Amazonian forests. Science (80-) 305:663–665. doi:10.1126/science.1098982

    Article  CAS  Google Scholar 

  • Fraser LH, Grime JP (1999) Interacting effects of herbivory and fertility on a synthesized plant community. J Ecol 87:514–525. doi:10.1046/j.1365-2745.1999.00373.x

    Article  Google Scholar 

  • Fraser LH, Pither J, Jentsch A, Sternberg M, Zobel M, Askarizadeh D, Bartha S, Beierkuhnlein C, Bennett JA, Bittel A, Boldgiv B, Boldrini II, Bork E, Brown L, Cabido M, Cahill J, Carlyle CN, Campetella G, Chelli S, Cohen O, Csergo A, Díaz S, Enrico L, Ensing D, Fidelis A, Fridley JD, Foster B, Garris H, Goheen JR, Henry HAL, Hohn M, Jouri MH, Klironomos J, Koorem K, Lawrence-Lodge R, Long R, Manning P, Mitchell R, Moora M, Müller SC, Nabinger C, Naseri K, Overbeck GE, Palmer TM, Parsons S, Pesek M, Pillar VD, Pringle RM, Roccaforte K, Schmidt A, Shang Z, Stahlmann R, Stotz GC, Sugiyama S, Szentes S, Thompson D, Tungalag R, Undrakhbold S, van Rooyen M, Wellstein C, Wilson JB, Zupo T (2015) Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science 349:302–305

    Article  CAS  PubMed  Google Scholar 

  • Fukami T, Martijn Bezemer T, Mortimer SR, Putten WH (2005) Species divergence and trait convergence in experimental plant community assembly. Ecol Lett 8:1283–1290. doi:10.1111/j.1461-0248.2005.00829.x

    Article  Google Scholar 

  • Godoy O, Kraft NJB, Levine JM (2014) Phylogenetic relatedness and the determinants of competitive outcomes. Ecol Lett 17:836–844

    Article  PubMed  Google Scholar 

  • Goldberg D, Barton A (1992) Patterns and consequences of interspecific competition in natural communities: a review of field experiments with plants. Am Nat 139:771–801

    Article  Google Scholar 

  • Grime JP (1973a) Competitive exclusion in herbaceous vegetation. Nature 242:344–347

    Article  Google Scholar 

  • Grime JP (1973b) Control of species density in herbaceous vegetation. J Environ Manage 1:151–167

    Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Article  Google Scholar 

  • Grime JP (2006) Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. J Veg Sci 17:255–260

    Article  Google Scholar 

  • Grime JP, Thompson K, Hunt R, Hodgson JG, Cornelissen JHC, Rorison IH, Hendry GAF, Ashenden TW, Askew AP, Band SR, Booth RE, Bossard CC, Campbell BD, Cooper JEL, Davison AW, Gupta PL, Hall W, Hand DW, Hannah MA, Hillier SH, Hodkinson DJ, Jalili A, Liu Z, Mackey JML, Matthews N, Mowforth MA, Neal AM, Reader RJ, Reiling K, Ross-Fraser W, Spencer RE, Sutton F, Tasker DE, Thorpe PC, Whitehouse J (1997) Integrated screening validates a primary axis of specialisation in plants. Oikos 79:259–281

    Article  Google Scholar 

  • Grubb P (1977) The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol Rev 52:107–145

    Article  Google Scholar 

  • Hairston NJ, Hairston NS (1993) Cause-effect relationships in energy flow, trophic structure, and interspecific interactions. Am Nat 142:379–411

    Article  Google Scholar 

  • Hutchings MJ, John EA, Wijesinghe DK (2003) Toward understanding the consequences of soil heterogeneity for plant populations and communities. Ecology 84:2322–2334. doi:10.1890/02-0290

    Article  Google Scholar 

  • Jiang L, Tan J, Pu Z (2010) An experimental test of Darwin’s naturalization hypothesis. Am Nat 175:415–423

    Article  PubMed  Google Scholar 

  • Keddy PA (1990) Competitive hierarchies and centrifugal organization in plant communities. In: Grace J, Tilman D (eds) Perspectives on plant competition. Academic Press, New York, pp 265–290

  • Körner C, Stöcklin J, Reuther-Thiébaud L, Pelaez-Riedl S (2008) Small differences in arrival time influence composition and productivity of plant communities. New Phytol 177:698–705. doi:10.1111/j.1469-8137.2007.02287.x

    Article  PubMed  Google Scholar 

  • Kraft NJB, Adler PB, Godoy O, James EC, Fuller S, Levine JM (2015a) Community assembly, coexistence, and the environmental filtering metaphor. Func Ecol 29:592–599

    Article  Google Scholar 

  • Kraft NJ, Godoy O, Levine JM (2015b) Plant functional traits and the multidimensional nature of species coexistence. Proc Natl Acad Sci USA 112:797–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunstler G, Falster D, Coomes DA, Hui F, Kooyman RM, Laughlin DC, Poorter L, Vanderwel M, Vieilledent G, Wright SJ, Aiba M, Baraloto C, Caspersen J, Cornelissen JHC, Gourlet-Fleury S, Hanewinkel M, Herault B, Kattge J, Kurokawa H, Onoda Y, Penuelas J, Poorter H, Uriarte M, Richardson S, Ruiz-Benito P, Sun IF, Stahl G, Swenson NG, Thompson J, Westerlund B, Wirth C, Zavala MA, Zeng H, Zimmerman JK, Zimmermann NE, Westoby M (2016) Plant functional traits have globally consistent effects on competition. Nature 529:204–207

    Article  CAS  PubMed  Google Scholar 

  • Levene H (1960) Robust tests for equality of variances. In: Olkin I, Ghurye SG, Hoeffding W, Madow WG, Mann HB (eds) Contributions to probability and statistics. Stanford University Press, Stanford, pp 278–292

    Google Scholar 

  • MacArthur R, Levins R (1967) The limiting similarity, convergence, and divergence of coexisting species. Am Nat 101:377–385

    Article  Google Scholar 

  • Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett 13:1085–1093

    Article  PubMed  Google Scholar 

  • McIntyre S, Lavorel S, Landsberg J, Forbes TDA (1999) Disturbance response in vegetation—towards a global perspective on functional traits. J Veg Sci 10:621–630. doi:10.2307/3237077

    Article  Google Scholar 

  • Narwani A, Alexandrou MA, Oakley TH, Carroll LT, Cardinale BJ (2013) Experimental evidence that evolutionary relatedness does not affect the ecological mechanisms of coexistence in freshwater green algae. Ecol Lett 16:1373–1381

    Article  PubMed  Google Scholar 

  • Pacala S, Tilman D (1994) Limiting similarity in mechanistic and spatial models of plant competition in heterogeneous environments. Am Nat 143:22–257

    Article  Google Scholar 

  • Park DS, Potter D (2013) A test of Darwin’s naturalization hypothesis in the thistle tribe shows that close relatives make bad neighbors. Proc Natl Acad Sci USA 110:17915–17920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickett S, White P (1985) The ecology of natural disturbance and patch dynamics. Elsevier, Amsterdam

    Google Scholar 

  • Pierce S, Luzzaro A, Caccianiga M, Ceriani RM, Cerabolini B (2007) Disturbance is the principal α-scale filter determining niche differentiation, coexistence and biodiversity in an alpine community. J Ecol 95:698–706. doi:10.1111/j.1365-2745.2007.01242.x

    Article  Google Scholar 

  • Pillar VD, da Duarte LS, Sosinski EE, Joner F (2009) Discriminating trait-convergence and trait-divergence assembly patterns in ecological community gradients. J Veg Sci 20:334–348. doi:10.1111/j.1654-1103.2009.05666.x

    Article  Google Scholar 

  • Rajaniemi TK (2003) Explaining productivity-diversity relationships in plants. Oikos 101:449–457. doi:10.1034/j.1600-0706.2003.12128.x

    Article  Google Scholar 

  • Rees M, Condit R, Crawley M, Pacala S, Tilman D (2001) Long-term studies of vegetation dynamics. Science (80-) 293:650–655. doi:10.1126/science.1062586

    Article  CAS  Google Scholar 

  • Reich PB, Lusk C, Wright IJ (2007) Predicting leaf physiology from simple plant and climate attributes: a global GLOPNET analysis. Ecol Appl 17:1982–1988

    Article  PubMed  Google Scholar 

  • Rosenzweig M (1968) Net primary productivity of terrestrial communities: prediction from climatological data. Am Nat 102:67–74

    Article  Google Scholar 

  • Sala OE, Parton WJ, Joyce LA, Lauenroth WK (1988) Primary production of the central grassland region of the United States. Ecology 69:40. doi:10.2307/1943158

    Article  Google Scholar 

  • Schwilk DW, Ackerly DD (2005) Limiting similarity and functional diversity along environmental gradients. Ecol Lett 8:272–281. doi:10.1111/j.1461-0248.2004.00720.x

    Article  Google Scholar 

  • Sørensen T (1948) A method of establishing groups of equal amplitude in a plant society based on similarity of species content and its application to analysis of the vegetation on Danish commons. Biol Skr 5:1–34

    Google Scholar 

  • Stubbs W, Wilson J (2004) Evidence for limiting similarity in a sand dune community. J Ecol 92:557–567. doi:10.1111/j.0022-0477.2004.00898.x

    Article  Google Scholar 

  • Thompson K, Hillier SH, Grime JP, Bossard CC, Band SR (1996) A functional analysis of a limestone grassland community. J Veg Sci 7:371–380. doi:10.2307/3236280

    Article  Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton

    Google Scholar 

  • Turkington R (1989) The growth, distribution and neighbour relationships of Trifolium repens in a permanent pasture. V. The coevolution of competitors. J Ecol 77:717–733

    Article  Google Scholar 

  • Uriarte M, Reeve HK (2003) Matchmaking and species marriage: a game-theory model of community assembly. PNAS 100:1787–1792. doi:10.1073/pnas.0337167100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villeger S, Mason NW, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301

    Article  PubMed  Google Scholar 

  • Violle C, Nemergut DR, Pu Z, Jiang L (2011) Phylogenetic limiting similarity and competitive exclusion. Eco Lett 14:782–787

    Article  Google Scholar 

  • Weiher E, van der Werf A, Thompson K, Roderick M, Garnier E, Eriksson O (1999) Challenging Theophrastus: a common core list of plant traits for functional ecology. J Veg Sci 10:609–620. doi:10.2307/3237076

    Article  Google Scholar 

  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159. doi:10.1146/annurev.ecolsys.33.010802.150452

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827. doi:10.1038/nature02403

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The ideas developed here benefited from discussions with Roy Turkington. This work was supported through a Natural Sciences and Engineering Research Council of Canada Discovery Grant and a Canada Research Chair to L. Fraser.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauchlan H. Fraser.

Additional information

Communicated by Prof. Lauchlan Fraser, Dr. Chris Lortie, Dr. JC Cahill.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraser, L.H., Garris, H.W. & Carlyle, C.N. Predicting plant trait similarity along environmental gradients. Plant Ecol 217, 1297–1306 (2016). https://doi.org/10.1007/s11258-016-0628-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-016-0628-3

Keywords

Navigation