Skip to main content

Advertisement

Log in

Trait distribution patterns in savanna and forest plant assemblages and their relationship with soil features

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Community ecologists seek to understand the processes acting on community assembly and the importance of species ecological differences to the co-existence of organisms. Here we investigated trait distribution patterns in two contrasting vegetation types, how the inclusion of intraspecific variability improves our ability to understand trait-based assembly, and if soil features predict the occurrence of non-random trait distribution patterns. We conducted our study at Emas National Park, Goiás, Brazil. We used a null model approach to investigate trait distribution patterns and a model selection approach to quantify soil features important in structuring assemblages. In savanna, we detected trait convergence at individual and species level (evidence of environmental filters) favoring plants with resource conservation strategies. In forests, however, trait dispersion at individual level equal to a random expectation corroborated a premise of neutral theory (individuals ecological equivalence). Nevertheless, at species level, we found convergence (seed mass) and divergence (height), reflecting distinct strategies related to light capture and resource use. Therefore, including intraspecific trait variability did not improve the detection of non-random trait distribution patterns. Furthermore, the influence of soil features on trait patterns was different between savanna and forest. There was a tendency for niche differentiation toward more fertile and clayey soils, but the relative importance of soil factors in assembling communities could not be generalized for savannas and dry forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aiba M, Katabuchi M, Takafumi H et al (2013) Robustness of trait distribution metrics for community assembly studies under the uncertainties of assembly processes. Ecology 94:2873–2885

    Article  PubMed  Google Scholar 

  • Albert CH, Thuiller W, Yoccoz NG et al (2010) Intraspecific functional variability: extent, structure and sources of variation. J Ecol 98:604–613. doi:10.1111/j.1365-2745.2010.01651.x

    Article  Google Scholar 

  • Angiosperm Phylogeny Group (2009) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  • Batalha MA, Silva IA, Cianciaruso MV, Carvalho GH (2011) Trait diversity on the phylogeny of cerrado woody species. Oikos 120:1741–1751. doi:10.1111/j.1600-0706.2011.19513.x

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information—theoretic approach, 2nd edn. Springer, Berlin

    Google Scholar 

  • Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35. doi:10.1007/s00265-010-1029-6

    Article  Google Scholar 

  • Carvalho GH, Cianciaruso MV, Batalha MA (2010) Plantminer: a web tool for checking and gathering plant species taxonomic information. Environ Model Softw 25:815–816. doi:10.1016/j.envsoft.2009.11.014

    Article  Google Scholar 

  • Chalmandrier L, Münkemüller T, Gallien L et al (2013) A family of null models to distinguish between environmental filtering and biotic interactions in functional diversity patterns. J Veg Sci 24:853–864. doi:10.1111/jvs.12031

    Article  PubMed Central  PubMed  Google Scholar 

  • Christianini AV (2007) Interações entre formigas, frutos e sementes em solo de cerrado: o papel de formigas na biologia de sementes e plântulas, p 187

  • Cianciaruso MV, Silva IA, Batalha MA et al (2012) The influence of fire on phylogenetic and functional structure of woody savannas: moving from species to individuals. Perspect Plant Ecol Evol Syst. doi:10.1016/j.ppees.2011.11.004

    Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E et al (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380

    Article  Google Scholar 

  • Cornwell WK, Ackerly DD (2009) Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol Monogr 79:109–126

    Article  Google Scholar 

  • Crawley MJ (1997) Life history and environment, 2nd edn., Plant ecologyBlackwell Science, Oxford, pp 73–132

    Google Scholar 

  • Dantas VL, Batalha MA, Pausas JG (2013a) Fire drives functional thresholds on the savanna—forest transition. Ecology 94:2454–2463

    Article  Google Scholar 

  • Dantas VL, Pausas JG, Batalha MA et al (2013b) The role of fire in structuring trait variability in neotropical savannas. Oecologia 171:487–494. doi:10.1007/s00442-012-2431-8

    Article  Google Scholar 

  • Díaz S, Cabido M, Casanoves F (1998) Plant functional traits and environmental filters at a regional scale. J Veg Sci 9:113–122

    Article  Google Scholar 

  • Diniz-filho JAF, Bini LM, Hawkins BA (2003) Spatial autocorrelation and red herrings in geographical ecology. Glob Ecol Biogeogr 12:53–64

    Article  Google Scholar 

  • de Souza TV, Voltolini CH, Santos M, Silveira Paulilo MT (2012) Water absorption and dormancy-breaking requirements of physically dormant seeds of Schizolobium parahyba (Fabaceae–Caesalpinioideae). Seed Sci Res 22:169–176. doi:10.1017/S0960258512000013

    Article  Google Scholar 

  • Durigan G, Baitello JB, Franco GADC, Siqueira MF (2004) Plantas do Cerrado paulista: imagens de uma paisagem ameaçada, p 475

  • Embrapa (1997) Manual de métodos de análise de solo. Embrapa, Rio de Janeiro

    Google Scholar 

  • Embrapa (1998) Análises químicas para avaliação da fertilidade do solo: métodos usados na Embrapa Solos. Embrapa, Rio de Janeiro

    Google Scholar 

  • Grime JP (2006) Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. J Veg Sci 17:255–260. doi:10.1111/j.1654-1103.2006.tb02444.x

    Article  Google Scholar 

  • Harper JL, Lovell PH, Moore KG (1970) The shapes and sizes of seeds. Annu Rev Ecol Syst 1:327–356

    Article  Google Scholar 

  • Hoffmann WA, Geiger EL, Gotsch SG et al (2012) Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. Ecol Lett 15:759–768. doi:10.1111/j.1461-0248.2012.01789.x

    Article  PubMed  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Jardim AVF, Batalha MA (2008) Can we predict dispersal guilds based on the leaf-height-seed scheme in a disjunct cerrado woodland? Braz J Biol 68:553–559

    Article  CAS  PubMed  Google Scholar 

  • Jung V, Violle C, Mondy C et al (2010) Intraspecific variability and trait-based community assembly. J Ecol 98:1134–1140. doi:10.1111/j.1365-2745.2010.01687.x

    Article  Google Scholar 

  • Kraft NJB, Ackerly DD (2010) Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecol Monogr 80:401–422

    Article  Google Scholar 

  • Kraft NJB, Valencia R, Ackerly DD (2008) Functional traits and niche-based tree community assembly in an amazonian forest. Science 322(80):580–582

    Article  CAS  PubMed  Google Scholar 

  • Laliberté E, Norton DA, Scott D (2013) Contrasting effects of productivity and disturbance on plant functional diversity at local and metacommunity scales. J Veg Sci 24:834–842. doi:10.1111/jvs.12044

    Article  Google Scholar 

  • Laughlin DC, Leppert JJ, Moore MM, Sieg CH (2010) A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora. Funct Ecol 24:493–501. doi:10.1111/j.1365-2435.2009.01672.x

    Article  Google Scholar 

  • Lavergne S, Garnier E, Debussche M (2003) Do rock endemic and widespread plant species differ under the leaf-height-seed plant ecology strategy scheme ? Ecol Lett 6:398–404

    Article  Google Scholar 

  • Lehsten V, Kleyer M (2007) Turnover of plant trait hierarchies in simulated community assembly in response to fertility and disturbance. Ecol Model 203:270–278. doi:10.1016/j.ecolmodel.2006.11.034

    Article  Google Scholar 

  • Leishman MR (2001) Does the seed size/number trade-off model determine plant community structure ? An assessment of the model mechanisms and their generality. Oikos 93:294–302

    Article  Google Scholar 

  • Leishman MR, Wright IJ, Moles AT, Westoby M (2000) The evolutionary ecology of seed size. Seeds Ecol Regen Plant Communities. 2:31–57

    Article  Google Scholar 

  • Liancourt P, Tielbörger K, Bangerter S, Prasse R (2009) Components of “competitive ability” in the LHS model: implication on coexistence for twelve co-occurring Mediterranean grasses. Basic Appl Ecol 10:707–714. doi:10.1016/j.baae.2009.05.003

    Article  Google Scholar 

  • Lorenzi H (1998) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil, vol 2, 2nd edn. Instituto Plantarum de Estudos da Flora, Nova Odessa, p 352

    Google Scholar 

  • Lorenzi H (2000) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil, vol 1, 3rd edn., p 352

  • Lorenzi H (2009) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil, vol 3, p 384

  • Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett 13:1085–1093. doi:10.1111/j.1461-0248.2010.01509.x

    Article  PubMed  Google Scholar 

  • Michaels HJ, Benner B, Hartgerink AP et al (1988) Seed size variation: magnitude, distribution, and ecological correlates. Evol Ecol 2:157–166

    Article  Google Scholar 

  • Møller AP, Jennions MD (2002) How much variance can be explained by ecologists and evolutionary biologists? Oecologia 132:492–500

    Article  Google Scholar 

  • Moog D, Kahmen S, Poschlod P (2005) Application of CSR- and LHS-strategies for the distinction of differently managed grasslands. Basic Appl Ecol 6:133–143. doi:10.1016/j.baae.2005.01.005

    Article  Google Scholar 

  • Muller-Landau HC (2010) The tolerance-fecundity trade-off and the maintenance of diversity in seed size. Proc Natl Acad Sci USA 107:4242–4247. doi:10.1073/pnas.0911637107

    Article  PubMed Central  PubMed  Google Scholar 

  • Neves F, Araújo LS, Espírito-Santo MM et al (2010) Canopy herbivory and insect herbivore diversity in a dry forest: savanna transition in Brazil. Biotropica 42:112–118

    Article  Google Scholar 

  • Obeso JR, Herrera CM (1994) Inter- and intraspecific variation in fruit traits in co-occurring vertebrate-dispersed plants. Int J Plant Sci 155:382–387

    Article  Google Scholar 

  • Ordoñez JC, van Bodegom PM, Witte J-PM et al (2009) A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob Ecol Biogeogr 18:137–149. doi:10.1111/j.1466-8238.2008.00441.x

    Article  Google Scholar 

  • Paine CET, Baraloto C, Chave J, Hérault B (2011) Functional traits of individual trees reveal ecological constraints on community assembly in tropical rain forests. Oikos 120:720–727. doi:10.1111/j.1600-0706.2010.19110.x

    Article  Google Scholar 

  • Pakeman RJ, Lepš J, Kleyer M et al (2009) Relative climatic, edaphic and management controls of plant functional trait signatures. J Veg Sci 20:148–159

    Article  Google Scholar 

  • Pausas JG, Verdú M (2008) Fire reduces morphospace occupation in plant communities. Ecology 89:2181–2186. doi:10.1890/07-1737.1

    Article  PubMed  Google Scholar 

  • Paz H, Martínez-Ramos M (2003) Seed mass and seedling performance within eight species of Psychotria (Rubiaceae). Ecology 84:439–450

    Article  Google Scholar 

  • Peres-Neto PR, Jackson DA, Somers KM (2003) Giving meaningful interpretation to ordination axes: assenssing loading significance in principal component analysis. Ecology 84:2347–2363

    Article  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge, p 534

    Book  Google Scholar 

  • Ramos VS, Durigan G, Franco GADC, Siqueira MF (2008) Árvores da floresta estacional semidecidual: guia de identificação de espécies, p 320

  • Rangel TF, Diniz-Filho JAF, Bini LM (2010) SAM: a comprehensive application for spatial analysis in macroecology. Ecography (Cop) 33:46–50. doi:10.1111/j.1600-0587.2009.06299.x

    Article  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing

  • Rede de Sementes do Cerrado (2010) REDE DE SEMENTES DO CERRADO. http://www.sementesdocerrado.bio.br

  • Rede de Sementes do Xingu (2010) REDE DE SEMENTES DO XINGU. http://www.sementesdoxingu.org.br/web/index.php

  • Reich PB, Walters MB, Ellsworth DS (1992) Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol Monogr 62:365–392

    Article  Google Scholar 

  • Reich PB, Ellsworth DS, Walters MB et al (1999) Generality of leaf trait relationships: a test across six biomes. Ecology 80:1955–1969

    Article  Google Scholar 

  • Royal Botanic Gardens Kew (2008) Seed information database (SID). http://data.kew.org/sid/

  • Ruggiero PGC, Batalha MA, Pivello VR, Meirelles ST (2002) Soil-vegetation relationships in cerrado (Brazilian savanna) and semideciduous forest, Southeastern Brazil. Plant Ecol 160:1–16

    Article  Google Scholar 

  • Schamp BS, Aarssen LW (2009) The assembly of forest communities according to maximum species height along resource and disturbance gradients. Oikos 118:564–572. doi:10.1111/j.1600-0706.2009.16589.x

    Article  Google Scholar 

  • Siefert A (2012) Incorporating intraspecific variation in tests of trait-based community assembly. Oecologia 170:767–775. doi:10.1007/s00442-012-2351-7

    Article  PubMed  Google Scholar 

  • Silva DM, Batalha MA (2011) Defense syndromes against herbivory in a cerrado plant community. Plant Ecol 212:181–193. doi:10.1007/s11258-010-9813-y

    Article  Google Scholar 

  • Silva Júnior MC (2005) 100 árvores do Cerrado: guia de campo, p 278

  • Silvertown J (2004) Plant coexistence and the niche. Trends Ecol Evol 19:605–611

    Article  Google Scholar 

  • Stubbs WJ, Wilson JB (2004) Evidence for limiting similarity in a sand dune community. J Ecol 92:557–567. doi:10.1111/j.0022-0477.2004.00898.x

    Article  Google Scholar 

  • Violle C, Castro H, Richarte J, Navas M-L (2009) Intraspecific seed trait variations and competition: passive or adaptive response? Funct Ecol 23:612–620. doi:10.1111/j.1365-2435.2009.01539.x

    Article  Google Scholar 

  • Violle C, Enquist BJ, McGill BJ et al (2012) The return of the variance: intraspecific variability in community ecology. Trends Ecol Evol 27:244–252

    Article  PubMed  Google Scholar 

  • Weiher E, Keddy PA (1995) Assembly rules, null models and trait dispersion: new questions from old patterns. Oikos 74:159–164

    Article  Google Scholar 

  • Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227

    Article  CAS  Google Scholar 

  • Westoby M, Falster DS, Moles AT et al (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159. doi:10.1146/annurev.ecolsys.33.010802.150452

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (#478747/2009-8), Fundação de Amparo à Pesquisa do Estado de Goiás, and Programa Ecológico de Longa Duração—site 13 for financial support; to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior for the scholarship granted to the first author; to Leandro Maracahipes, Edmar A. Oliveira, Paulo Zava, Rhayane Werneck and Giovana Zilli for helping us in the field. Mário Almeida Neto, Sandra Müller, two anonymous reviewers, and Philip Ladd provided important comments on the manuscript. Marcus Cianciaruso has a productivity grant from Conselho Nacional de Desenvolvimento Científico e Tecnológico (306843/2012-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus V. Cianciaruso.

Additional information

Communicated by Philip Ladd.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 94 kb)

Supplementary material 1 (PDF 94 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laureto, L.M.O., Cianciaruso, M.V. Trait distribution patterns in savanna and forest plant assemblages and their relationship with soil features. Plant Ecol 216, 629–639 (2015). https://doi.org/10.1007/s11258-015-0464-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-015-0464-x

Keywords

Navigation