Skip to main content

Advertisement

Log in

Does the phytotoxic shrub Heterothalamus psiadioides affect a plant community through allelopathy?

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Phytotoxicity has often been proposed as evidence of allelopathy. However, few studies have investigated allelopathy in natural field conditions. In South Brazilian grasslands, Heterothalamus psiadioides, a shrub establishing in dense stands, has shown strong phytotoxicity in laboratory assays. We conducted a field study to evaluate if this species also negatively affects a plant community through allelopathy. At a shrubland site, we established a phytotoxicity gradient, consisting of plots with H. psiadioides, plots with Baccharis patens—a shrub with minimal phytotoxicity—and plots without shrubs (no phytotoxicity). We assessed plant species cover, biomass, number of seedlings, diversity, richness, and plant community characteristics. Our study did not show evidences of plant inhibition near the phytotoxic species. We observed higher plant richness and diversity in plots with H. psiadioides than in plots with B. patens and without shrubs. The highest diversity near H. psiadioides was associated with greater forb cover, due to lower cover of dominant grasses. Differences in light incidence accounted for vegetation patterns more than allelopathic activity. Therefore, our study showed that the allelopathic potential of the evaluated species was overestimated based only on laboratory studies. We emphasize the relevance of conducting allelopathy studies in field and of having a similar species with low phytotoxicity in this kind of study. Results based only on laboratory assays and visual evidence of patterns in field may be misleading and may lead to an overestimation of the role of allelopathy in plant communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaike H (1974) A new look at statistical model identification. IEEE Trans Autom Control 19:716–722. doi:10.1109/TAC.1974.1100705

    Article  Google Scholar 

  • Anand M, Orlóci L (1996) Complexity in plant communities: the notion and quantification. J Theor Biol 179:179–186. doi:10.1006/jtbi.1996.0058

    Article  Google Scholar 

  • Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301:1377–1380. doi:10.1126/science.1083245

    Article  CAS  PubMed  Google Scholar 

  • Barney JN, Hay AG, Weston LA (2005) Isolation and characterization of allelopathic volatiles from mugwort (Artemisia vulgaris). J Chem Ecol 31:247–265. doi:10.1007/s10886-005-1339-8

    Article  CAS  PubMed  Google Scholar 

  • Barroso GM (1976) Compositae—Subtribo Baccharidinae Hoffmann: Estudo das espécies ocorrentes no Brasil. Rodriguésia 40:1–273

    Google Scholar 

  • Barroso GM, Bueno O (2002) Plantas Compostas–Subtribo: Baccharidinae. In: Reitz R (ed) Flora llustrada Catarinense, Itajaí, pp 767–768

  • Bartholomew B (1970) Bare zone between California shrub and grasslands communities: the role of animals. Science 170:1210–1212. doi:10.1126/science.170.3963.1210

    Article  CAS  PubMed  Google Scholar 

  • Blum U, Shafer SR, Lehman ME (1999) Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: concepts vs. experimental model. Crit Rev Plant Sci 18:673–693. doi:10.1080/07352689991309441

    Article  CAS  Google Scholar 

  • Cipollini D, Dorning M (2008) Direct and indirect effects of conditioned soils and tissue extracts of the invasive shrub, Lonicera maackii, on target plant performance. Castanea 73:166–176. doi:10.2179/0008-7475-73.3.166

    Article  Google Scholar 

  • Deble LP, Oliveira AS, Marchiori JNC (2005) O gênero Heterothalamus Lessing e táxones afins. Balduinia 1:1–20

    Google Scholar 

  • El-Keblawy A, Al-Rawai A (2007) Impacts of the invasive exotic Prosopis juliflora (Sw.) D.C. on the native flora and soils of the UAE. Plant Ecol 190:23–35. doi:10.1007/s11258-006-9188-2

    Article  Google Scholar 

  • Ens EJ, Bremner JB, French K, Korth J (2009) Identification of volatile compounds released by roots of an invasive plant, bitou bush (Chrysanthemoides monilifera spp. rotundata), and their inhibition of native seedling growth. Biol Invasions 11:275–287. doi:10.1007/s10530-008-9232-3

    Article  Google Scholar 

  • Ferreira PMA (2014) Abordagem quali-quantitativa e funcional de vegetação campestre nos biomas Pampa e Mata Atlântica. PhD Thesis, Universidade Federal do Rio Grande do Sul

  • Halligan JP (1975) Toxic terpenes from Artemisia californica. Ecology 53:999–1003. doi:10.2307/1936312

    Article  Google Scholar 

  • Heisler JL, Briggs JM, Knapp AK, Blair JM, Seery A (2004) Direct and indirect effects of fire on shrub density and aboveground productivity in a mesic grassland. Ecology 85:2245–2257. doi:10.1890/03-0574

    Article  Google Scholar 

  • Inderjit, Callaway RM (2003) Experimental designs for the study of allelopathy. Plant Soil 256:1–11. doi:10.1023/A:1026242418333

    Article  CAS  Google Scholar 

  • Inderjit, Nilsen ET (2003) Bioassays and field studies for allelopathy in terrestrial plants: progress and problems. Crit Rev Plant Sci 22:221–238. doi:10.1080/713610857

    Article  Google Scholar 

  • Inderjit, Weiner J (2001) Plant allelochemical interference or soil chemical ecology? Perspect Plant Ecol Evol Syst 4:3–12. doi:10.1078/1433-8319-00011

    Article  Google Scholar 

  • Inderjit, Weston LA (2000) Are laboratory bioassays for allelopathy suitable for prediction of field responses? J Chem Ecol 26:2111–2118. doi:10.1023/A:1005516431969

    Article  CAS  Google Scholar 

  • Lambers H, Colmer TD (2005) Root Physiology: from gene to function. Springer, Dordrecht

    Book  Google Scholar 

  • Lazarotto DC (2014) Fitotoxidez do óleo essencial de Heterothalamus psiadioides Less. sobre Arabidopsis thaliana (L.) Heynh. Dissertation, Universidade Federal do Rio Grande do Sul

  • Lett MS, Knapp AK (2003) Consequences of shrub expansion in mesic grassland: resource alterations and graminoid responses. J Veg Sci 14:487–496. doi:10.1111/j.1654-1103.2003.tb02175.x

    Article  Google Scholar 

  • Li XF, Wang J, Huang D, Wang LX, Wang K (2011) Allelopathic potential of Artemisia frigida and successional changes of plant communities in the northern China steppe. Plant Soil 341:383–398. doi:10.1007/s11104-010-0652-3

    Article  CAS  Google Scholar 

  • Londo G (1976) The decimal scale for relevés of permanent quadrats. Vegetatio 33:61–64. doi:10.1007/BF00055300

    Article  Google Scholar 

  • Maluf JRT (2000) A new climatic classification for the state of Rio Grande do Sul, Brazil. Rev Bras Agromet 8:141–150

  • Marchiori JNC, Oliveira-Deble AS (2007) Anatomia da madeira na subtribo Baccharinae Less. Tendências gerais de ordem taxonômica e ecológica. Balduinia 11:9–15

    Google Scholar 

  • Muller CH (1965) Inhibitory terpenes volatilized from Salvia shrubs. Bull Torrey Bot Club 92:38–45. doi:10.2307/2483311

    Article  CAS  Google Scholar 

  • Muller CH (1966) The role of chemical inhibition (allelopathy) in vegetational composition. Bull Torrey Bot Club 93:332–351. doi:10.2307/2483447

    Article  CAS  Google Scholar 

  • Muller CH, Muller WH, Haines BL (1964) Volatile growth inhibitors produced by aromatic shrubs. Science 143:471–473. doi:10.1126/science.143.3605.471

    Article  CAS  PubMed  Google Scholar 

  • Nishida N, Tamotsu S, Nagata N, Saito C, Sakai A (2005) Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J Chem Ecol 31:1187–1203. doi:10.1007/s10886-005-4256-y

    Article  CAS  PubMed  Google Scholar 

  • Overbeck GE, Pfadenhauer J (2007) Adaptive strategies in burned subtropical grassland in southern Brazil. Flora 202:27–49. doi:10.1016/j.flora.2005.11.004

    Article  Google Scholar 

  • Overbeck GE, Müller SC, Pillar VD, Pfadenhauer J (2005) Fine-scale post-fire dynamics in southern Brazilian subtropical grassland. J Veg Sci 16:655–664. doi:10.1111/j.1654-1103.2005.tb02408.x

    Article  Google Scholar 

  • Overbeck GE, Müller SC, Pillar VD, Pfadenhauer J (2006) Floristic composition, environmental variation and species distribution patterns in burned grassland in southern Brazil. Braz J Biology 66:1073–1090. doi:10.1590/S1519-69842006000600015

    Article  CAS  Google Scholar 

  • Overbeck GE, Müller SC, Fidelis A, Pfadenhauer J, Pillar VD, Blanco CC, Boldrini II, Both R, Forneck ED (2007) Brazil’s neglected biome: the South Brazilian Campos. Perspect Plant Ecol 9:101–116. doi:10.1016/j.ppees.2007.07.005

    Article  Google Scholar 

  • Paudel S, Baer SG, Battaglia LL (2014) Arbuscular mycorrhizal fungi (AMF) and success of Triadica sebifera invasion in coastal transition ecosystems along the northern Gulf of Mexico. Plant Soil 378:337–349. doi:10.1007/s11104-014-2026-8

    Article  CAS  Google Scholar 

  • Pillar VD (1999a) The bootstrapped ordination re-examined. J Veg Sci 10:895–902. doi:10.2307/3237314

    Article  Google Scholar 

  • Pillar VD (1999b) How sharp are classifications? Ecology 80:2508–2516. doi:10.2307/177236

    Article  Google Scholar 

  • Pillar VD (2009) MULTIV, software for multivariate exploratory analysis, randomization testing and bootstrap resampling. Version Beta 2.6.8 Departamento de Ecologia, UFRGS, Porto Alegre, Brazil http://ecoqua.ecologia.ufrgs.br. Accessed 8 Oct 2013

  • Pillar VD, Orlóci L (1996) On randomization testing in vegetation science: multifactor comparisons of relevé groups. J Veg Sci 7:585–592. doi:10.2307/3236308

    Article  Google Scholar 

  • Píriz GF (2011) Efecto del arbusto Eupatorium buniifolium (Hook. y Arn.) en el desempeño y la distribución espacial de gramíneas nativas en un pastizal natural de Uruguay. Dissertation, Universidad de la Republica

  • Pisula N, Meiners SJ (2010) Allelopathic effects of Goldenrod species on turnover in successional communities. Am Midl Nat 163:161–172. doi:10.1674/0003-0031-163.1.161

    Article  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 20 Oct 2013

  • Reigosa M, Gomes AS, Ferreira AG, Borghetti F (2013) Allelopathic research in Brazil. Acta Bot Bras 27:629–646. doi:10.1590/S0102-33062013000400001

    Article  Google Scholar 

  • Rice EL (1984) Allelopathy. Academic Publishers, New York

    Google Scholar 

  • Ridenour WM, Callaway RM (2001) The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass. Oecologia 126:444–450. doi:10.1007/s004420000533

    Article  Google Scholar 

  • Schmidt-Silva V (2012) Potencial alelopático do óleo essencial de espécies de Heterothalamus nativas do Rio Grande do Sul. PhD Thesis, Universidade Federal do Rio Grande do Sul

  • Schmidt-Silva V, Pawlowski Â, dos Santos EK, Zini CA, Soares GLG (2011) Cytotoxicity of essential oils from two species of Heterothalamus (Asteraceae). Aust J Bot 59:682. doi:10.1071/bt11214

    Article  Google Scholar 

  • Setubal RS, Boldrini II (2010) Floristic and characterization of grassland vegetation at a granitic hill in Southern Brazil. Rev Bras Bioc 8:85–111

    Google Scholar 

  • Silva ER, Overbeck GE, Soares GLG (2014) Phytotoxicity of volatiles from fresh and dry leaves of two Asteraceae shrubs: evaluation of seasonal effects. S Afr J Bot 93:14–18. doi:10.1016/j.sajb.2014.03.006

    Article  CAS  Google Scholar 

  • Stowe LG (1979) Allelopathy and its influence on the distribution of plants in an Illinois old-field. J Ecol 67:1065–1085. doi:10.2307/2259228

    Article  CAS  Google Scholar 

  • Streck EV, Kämpf N, Dalmolin RSD, Klamt E, Nascimento PC, Schneider P (2002) Solos do Rio Grande do Sul. EMATER/UFRGS, Porto Alegre

    Google Scholar 

  • Thimijan RW, Heins RD (1983) Photometric, radiometric, and quantum light units of measure: a review of procedures for interconversion. HortScience 18:818–822

    Google Scholar 

  • Weidenhamer JD, Macias FA, Fischer NH, Williamson BG (1993) Just how insoluble are monoterpenes? J Chem Ecol 19:1799–1807. doi:10.1007/BF00982309

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the MSc scholarship granted to the first author. We are grateful to MSc Pedro Joel Silva da Silva Filho, MSc Diana Carla Lazarotto, and Rosângela Gonçalves Rolim for their help with field work and species identification. We also thank the editor and two anonymous reviewers for their valuable suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliane R. da Silva.

Additional information

Communicated by S. J. Meiners.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 202 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, E.R., Ferreira, P.M.A., Overbeck, G.E. et al. Does the phytotoxic shrub Heterothalamus psiadioides affect a plant community through allelopathy?. Plant Ecol 216, 87–97 (2015). https://doi.org/10.1007/s11258-014-0418-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-014-0418-8

Keywords

Navigation