Skip to main content

Advertisement

Log in

Clonal ability, height and growth form explain species’ response to habitat deterioration in Fennoscandian wooded meadows

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Fennoscandian calcareous wooded meadows have high conservation value due to very high diversity which has been maintained by consistent mowing, but undergo species loss when this management is abandoned. We compared species richness and composition of regularly mown and abandoned wooded meadows in Estonia and established species groups with respect to their response to abandonment. These meadows were very species rich with a maximum of 43 species per 0.25 m2. Species whose populations are maintained by mowing constituted >60 % of the floristic diversity of the mown wooded meadows. Abandonment suppressed species with a preference for dry infertile open habitats. Response to abandonment was related to clonality, height and growth form. The greatest negative response was associated with low graminoids, short-lived and non-clonal species, rosette and semi-rosette growth form. Weak competitors with low height and light seeds exhibited a slow decline; perennial life span and clonality enable a delay in local extinction of these species. Response groups had similar persistence at a national level, revealing that earlier assessment of species dynamics at larger spatial scales could underestimate the number of threatened species. Application of restoration measures could avoid local extinctions of many mowing-supported species, whereas some of the mowing-dependent species likely need reintroduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aavik T, Jõgar Ü, Liira J, Tulva I, Zobel Martin (2008) Plant diversity in a calcareous wooded meadow: the significance of management continuity. J Veg Sci 19:475–484

    Article  Google Scholar 

  • Billeter R, Peintinger M, Diemer M (2007) Restoration of montane fen meadows by mowing remains possible after 4–35 years of abandonment. Bot Helv 117:1–13

    Article  Google Scholar 

  • Bossuyt B, Honnay O (2008) Can the seed bank be used for ecological restoration? An overview of seed bank characteristics in European communities. J Veg Sci 19:875–884

    Article  Google Scholar 

  • Braun-Blanquet J (1964) Pflanzensoziologie. Grundzüge der Vegetationskunde. Springer, Wien

    Book  Google Scholar 

  • Brooks TM, Mittermeier RA, Mittermeier CG, daFonseca GAB, Rylands AB, Konstant WR, Flick P, Pilgrim JD, Oldfield S, Magin G, Hilton-Taylor C (2002) Habitat loss and extinction in the hotspots of biodiversity. Conserv Biol 16:909–923

    Article  Google Scholar 

  • Castro H, Lehsten V, Lavorel S, Freitas H (2010) Functional response traits in relation to land use change in the Montado. Agric Ecosyst Environ 137:183–191

    Article  Google Scholar 

  • Diekmann M (2003) Species indicator values as an important tool in applied plant ecology: a review. Basic Appl Ecol 4:493–506

    Article  Google Scholar 

  • Dupré C, Ehrlén J (2002) Habitat configuration, species traits and plant distributions. J Ecol 90:796–805

    Article  Google Scholar 

  • Einarsson A, Milberg P (1999) Species richness and distribution in relation to light in wooded meadows and pastures in southern Sweden. Ann Bot Fenn 36:99–107

    Google Scholar 

  • Ellenberg H, Weber HE, Dull R, Wirth V, Werner W, Paulissen D (1991) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18:1–248

    Google Scholar 

  • Eriksson O (2000) Seed dispersal and colonization ability of plants: assessment and implications for conservation. Folia Geobot 35:115–123

    Article  Google Scholar 

  • Eriksson O, Jakobsson A (1998) Abundance, distribution and life histories of grassland plants: a comparative study of 81 species. J Ecol 86:922–933

    Article  Google Scholar 

  • Grime JP (2001) Plant strategies, vegetation processes and ecosystem properties, 2nd edn. John Wiley and Sons, Chichester

    Google Scholar 

  • Grime JP, Hodgson J, Hunt R (2007) Comparative plant ecology: a functional approach to common British species, 2nd edn. Castlepoint Press, Colvend

    Google Scholar 

  • Hanski I (2005) The Shrinking World: Ecological Consequences of Habitat Loss. Excellence in Ecology 14. International Ecology Institute, Oldendorf/Luhe

  • Hansson M, Fogelfors H (2000) Management of a seminatural grassland; results from a 15-year-old experiment in southern Sweden. J Veg Sci 11:31–38

    Article  Google Scholar 

  • Hunt R, Hodgson JG, Thompson K, Bungener P, Dunnett NP, Askew AP (2004) A new practical tool for deriving a functional signature for herbaceous vegetation. Appl Veg Sci 7:163–170

    Article  Google Scholar 

  • Johansson V, Cousins S, Eriksson O (2011) Remnant populations and plant functional traits in abandoned semi-natural grasslands. Folia Geobot 46(2–3):165–179

    Article  Google Scholar 

  • Kahmen S, Poschlod P (2004) Plant functional trait responses to grassland succession over 25 years. J Veg Sci 15:21–32

    Article  Google Scholar 

  • Kahmen S, Poschlod P (2008) Does the germination success differ with respect to seed mass and germination season? Experimental testing of plant functional trait responses to grassland management. Ann Bot 101:541–548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kalamees R, Zobel M (1998) Soil seed bank composition in different successional stages of a species rich wooded meadow in Laelatu, western Estonia. Acta Oecol 19(2):175–180

    Article  Google Scholar 

  • Klimeš, L, Klimešova, J (2006) Clo-Pla 3—database of clonal growth of plants from Central Europe. http://clopla.butbn.cas.cz/

  • Klimešova J, Latzel V, de Bello F, van Groenendael JM (2008) Plant functional traits in studies of vegetation changes in response to grazing and mowing: towards a use of more specific traits. Preslia 80:245–253

    Google Scholar 

  • Kukk T, Kull K (1997) Puisniidud (Wooded Meadows). Estonia Maritima 2:1–249 (in Estonian with English summary)

    Google Scholar 

  • Kukk T, Kull T (eds) (2005) Atlas of the Estonian flora. Institute of Agricultural and Environmental Sciences of the Estonian University of Life Sciences, Tartu, 527 pp

  • Kull K, Zobel M (1991) High species richness in an Estonian wooded meadow. J Veg Sci 2(5):715–718

    Article  Google Scholar 

  • Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J, Lindborg R, Öckinger E, Pärtel M, Pino J, Rodà F, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24:564–571

    Article  PubMed  Google Scholar 

  • Lavorel S, McIntyre S, Landsberg J, Forbes D (1997) Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends Ecol Evol 12:474–478

    Article  CAS  PubMed  Google Scholar 

  • Leht M (ed) (2007) Eesti taimede määraja (A guide of Estonian plants). EMÜ, Eesti Loodusfoto, Tartu, pp 1–447

    Google Scholar 

  • Lindborg R, Helm A, Bommarco R, Heikkinen R, Kühn I, Pykälä J, Pärtel M (2011) Effect of habitat area and isolation on plant trait distribution in European forests and grasslands. Ecography 34:001–008

    Article  Google Scholar 

  • Mitlacher K, Poschlod P, Rosén E, Bakker JP (2002) Restoration of wooded meadows: a comparative analysis along a chronosequence on Öland (Sweden). Appl Veg Sci 5:63–73

    Google Scholar 

  • Moles A, Westoby M (2006) Seed size and plant strategy across the whole life cycle. Oikos 113:91–105

    Article  Google Scholar 

  • Moog D, Kahmen S, Poschlod P (2005) Application of CSR- and LHS-strategies for the distinction of differently managed grasslands. Basic Appl Ecol 6:133–143

    Article  Google Scholar 

  • Moog D, Poschlod P, Kahmen S, Schreiber KF (2002) Comparison of species composition between different grassland managements treatments after 25 years. J Appl Veg Sci 5:99–106

    Article  Google Scholar 

  • Paal J (1997) Eesti taimkatte kasvukohatüüpide klassifikatsioon (Classification of Estonian vegetation site types. KM info- ja tehnokeskus, Tallinn 297 pp (in Estonian)

  • Pärtel M, Sammul M, Bruun HH (2005) Biodiversity in temperate European grasslands: origin and conservation. In: Lillak R, Viiralt R, Linke A, Geherman V (eds) Integrating efficient grassland farming and biodiversity. Greif printhouse, Tartu, pp 1–15

    Google Scholar 

  • Poschlod P, Kiefer S, Tränkle U, Fischer S, Bonn S (1998) Plant species richness in calcareous grasslands as affected by dispersibility in space and time. Appl Veg Sci 1:75–90

    Article  Google Scholar 

  • Römermann C, Tackenberg O, Jackel AK, Poschlod P (2008) Eutrophication and fragmentation are related to species’ rate of decline but not to species rarity: results from a functional approach. Biodivers & Conserv 17:591–604

    Article  Google Scholar 

  • Saar L, Takkis K, Pärtel M, Helm A (2012) Which plant traits predict species loss in calcareous grasslands with extinction debt? Diversity Distrib 18:808–817

    Article  Google Scholar 

  • Sammul M, Kattai K, Lanno K, Meltsov V, Otsus M, Nõuakas L, Kukk D, Mesipuu M, Kana S, Kukk T (2008a) Wooded meadows of Estonia: conservation efforts for a traditional habitat. Agric Food Sci 17(4):413–429

    Article  Google Scholar 

  • Sammul M, Kull T, Lanno K, Otsus M, Mägi M, Kana S (2008b) Habitat preferences and distribution characteristics are indicative of species long-term persistence in the Estonian flora. Biodivers & Conserv 17(14):3531–3550

    Article  Google Scholar 

  • Schellberg J, da Pontes LS (2012) Plant functional traits and nutrient gradients on grassland. Grass Forage Sci 67:305–319

    Article  Google Scholar 

  • Smart SM, Bunce RGH, Marrs R, Le Duc M, Firbank LG, Maskell LC, Scott WA, Thompson K, Walker KJ (2005) Large-scale changes in the abundance of common higher plant species across Britain between 1978, 1990 and 1998 as a consequence of human activity: tests of hypothesised changes in trait representation. Biol Conserv 124:355–371

    Article  Google Scholar 

  • Thompson K, Bakker JP, Bekker RM (1997) The soil seed banks of North West Europe: Methodology, density and longevity. Cambridge University Press, Cambridge

    Google Scholar 

  • Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66

  • Tremlová K, Münzbergová Z (2007) Importance of species traits for species distribution in fragmented landscapes. Ecology 88(4):965–977

    Article  PubMed  Google Scholar 

  • Valkó O, Török P, Tóthmérész B, Matus G (2011) Restoration potential in seed banks of acidic fen and dry-mesophilous meadows: can restoration be based on local seed banks? Restor Ecol 19:9–15

    Article  Google Scholar 

  • Wahlman H, Milberg P (2002) Management of semi-natural grassland vegetation: evaluation of a long-term experiment in southern Sweden. Ann Bot Fenn 39:159–166

    Google Scholar 

  • Wasof S, Lenoir J, Gallet-Moron E, Jamoneau A, Brunet J, Cousins S, De Frenne P, Diekmann M, Hermy M, Kolb A, Liira J, Verheyen K, Wulf M, Decocq G (2013) Ecological niche shifts of understorey plants along a latitudinal gradient of temperate forests in north-western Europe. Global Ecol Biogeogr 22:1130–1140

    Article  Google Scholar 

  • Wesche K, Krause B, Culmsee H, Leuschner C (2012) Fifty years of change in Central European grassland vegetation: large losses in species richness and animal-pollinated plants. Biol Conserv 150:76–85

    Article  Google Scholar 

  • Wilson JB, Peet RK, Dengler J, Pärtel M (2012) Plant species richness: the world records. J Veg Sci 23:796–802

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ulvi Karu for help in fieldwork, Kaja Lotman for help in arrangement of the study, the editor and two anonymous reviewers for valuable comments, Robert Szava-Kovats for language revision. The study was funded from the Estonian Science Foundation Grants no 7567, 8745 and a post-doctoral grant for Merit Otsus, by institutional research funding IUT21-1 of the Estonian Ministry of Education and Research. We thank TAA Herbarium in Estonian University of Life Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merit Otsus.

Additional information

Communicated by Jodi Price.

Appendix

Appendix

Mowing-dependent species

Agrostis stolonifera, Allium oleraceum, Campanula trachelium, Carex capillaris, Carex pulicaris, Cerastium fontanum, Crepis praemorsa, Festuca ovina, Fragaria vesca, Helianthemum nummularium, Heracleum sibiricum, Hieracium spp, Hypericum maculatum, Lathyrus vernus, Pilosella spp, Plantago media, Poa pratensis, Polygala amarella, Polygonatum odoratum, Prunella vulgaris, Rhinanthus minor, Rumex acetosa, Trifolium montanum, Trifolium pratense, Trifolium repens, Viola mirabilis.

Mowing-supported species

Achillea millefolium, Agrimonia eupatoria, Agrostis capillaris, Alchemilla vulgaris, Anemone nemorosa, Anthoxanthum odoratum, Anthriscus sylvestris, Anthyllis vulneraria, Aquilegia vulgaris, Asperula tinctoria, Briza media, Calamagrostis arundinacea, Campanula glomerata, Campanula rotundifolia, Carex caryophyllea, Carex digitata, Carex flacca, Carex ornithopoda, Carex pallescens, Carex panicea, Clinopodium vulgare, Convallaria majalis, Dactylis glomerata, Dactylorhiza fuchsii, Danthonia decumbens, Epipactis atrorubens, Festuca pratensis, Filipendula ulmaria, Filipendula vulgaris, Galium album, Geranium sanguineum, Gymnadenia conopsea, Helictotrichon pubescens, Hepatica nobilis, Hieracium umbellatum, Knautia arvensis, Lathyrus pratensis, Leontodon hispidus, Linum catharcticum, Luzula campestris, Luzula pilosa, Medicago lupulina, Molinia caerulea, Origanum vulgare, Paris quadrifolia, Pilosella officinarum, Plantago lanceolata, Platanthera chlorantha, Poa angustifolia, Potentilla erecta, Potentilla reptans, Primula veris, Pyrola rotundifolia, Ranunculus acris, Ranunculus auricomus, Ranunculus cassubicus, Ranunculus polyanthemos, Sesleria coerulea, Silene nutans, Solidago virgaurea, Succisa pratensis, Trollius europaeus, Valeriana officinalis, Vicia sepium, Viola canina, Viola collina, Viola riviniana, Viola rupestris.

Neutral species

Aegopodium podagraria, Brachypodium pinnatum, Calamagrostis epigeios, Campanula persicifolia, Carex pilulifera, Carex tomentosa, Centaurea jacea, Cirsium acaule, Deschampsia caespitosa, Equisetum arvense, Festuca arundinacea, Festuca rubra, Galium boreale, Galium verum, Geum rivale, Helictotrichon pratense, Inula salicina, Leucanthemum vulgare, Listera ovata, Lotus corniculatus, Luzula multiflora, Lychnis flos-cuculi, Maianthemum bifolium, Melampyrum nemorosum, Melampyrum pratense, Melampyrum sylvaticum, Mercurialis perennis, Ophioglossum vulgatum, Oxalis acetosella, Pimpinella saxifraga, Platanthera bifolia, Primula farinosa, Rubus saxatilis, Scorzonera humilis, Selinum carvifolia, Stellaria graminea, Taraxacum officinale, Vaccinium myrtillus, Vaccinium vitis-idaea, Veronica chamaedrys, Veronica officinalis, Vicia cracca.

Mowing-suppressed species

Achillea ptarmica, Angelica sylvestris, Athyrium filix-femina, Bromus inermis, Calamagrostis stricta, Caltha palustris, Carex disticha, Carex nigra, Carex riparia, Carex vaginata, Carum carvi, Cirsium palustre, Crepis paludosa, Elymus repens, Epipactis palustris, Euphrasia spp, Galium mollugo, Geranium palustre, Geranium sylvaticum, Hypericum perforatum, Hypochaeris maculata, Leontodon autumnalis, Lysimachia nummularia, Lysimachia vulgaris, Melica nutans, Mentha arvensis, Orchis mascula, Phleum pratense, Plantago major, Poa compressa, Poa palustris, Potentilla anserina, Potentilla palustris, Ranunculus fallax, Ranunculus ficaria, Ranunculus repens, Rubus caesius, Scrophularia nodosa, Vicia sylvatica, Viola epipsila.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otsus, M., Kukk, D., Kattai, K. et al. Clonal ability, height and growth form explain species’ response to habitat deterioration in Fennoscandian wooded meadows. Plant Ecol 215, 953–962 (2014). https://doi.org/10.1007/s11258-014-0347-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-014-0347-6

Keywords

Navigation