Skip to main content
Log in

Functional magnetic resonance imaging for staging chronic kidney disease: a systematic review and meta-analysis

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Introduction

The commonly used clinical indicators are not sensitive and comprehensive enough to evaluate the early staging of chronic kidney disease (CKD). This study aimed to evaluate the differences in arterial spin labeling (ASL) and blood oxygenation level–dependent functional magnetic resonance imaging (BOLD-MRI) parameter values among patients at various stages of chronic kidney disease and healthy individuals.

Methods

Electronic databases PubMed, Web of Science, Cochrane, and Embase were searched from inception to March 29, 2024, to identify relevant studies on ASL and BOLD in CKD. The renal blood flow (RBF) and apparent relaxation rate (R2*) values were obtained from healthy individuals and patients with various stages of CKD. The meta-analysis was conducted using STATA version 12.0. The random-effects model was used to obtain estimates of the effects, and the results were expressed as 95% confidence intervals (CIs) and mean differences (MDs) of continuous variables.

Results

A total of 18 published studies were included in this meta-analysis. The cortical RBF and R2* values and medulla RBF values were considerably distinct between patients with various stages of CKD and healthy controls (MD, − 78.162; 95% CI, − 85.103 to − 71.221; MD, 2.440; 95% CI, 1.843 to 3.037; and MD, − 36.787; 95% CI, − 47.107 to − 26.468, respectively). No obvious difference in medulla R2* values was noted between patients with various stages of CKD and healthy controls (MD, − 1.475; 95% CI, − 4.646 to 1.696).

Conclusion

ASL and BOLD may provide complementary and distinct information regarding renal function and could potentially be used together to gain a more comprehensive understanding of renal physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Additional data are made available in supplementary document of this manuscript.

References

  1. Aklilu AM (2023) Diagnosis of chronic kidney disease and assessing glomerular filtration rate. Med Clin North Am 107(4):641–658. https://doi.org/10.1016/j.mcna.2023.03.001

    Article  PubMed  Google Scholar 

  2. Alsop DC, Detre JA, Golay X (2015) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 73(1):102–116. https://doi.org/10.1002/mrm.25197

    Article  PubMed  Google Scholar 

  3. Cai YZ, Li ZC, Zuo PL (2017) Diagnostic value of renal perfusion in patients with chronic kidney disease using 3D arterial spin labeling. J Magn Reson Imag : JMRI 46(2):589–594. https://doi.org/10.1002/jmri.25601

    Article  Google Scholar 

  4. Chan WY, Hartono S, Thng CH (2020) New advances in magnetic resonance techniques in abdomen and pelvis. Magn Reson Imag Clin N Am 28(3):433–445. https://doi.org/10.1016/j.mric.2020.04.001

    Article  Google Scholar 

  5. Chen F, Yan H, Yang F (2021) Evaluation of renal tissue oxygenation using blood oxygen level-dependent magnetic resonance imaging in chronic kidney disease. Kidney Blood Press Res 46(4):441–451. https://doi.org/10.1159/000515709

    Article  CAS  PubMed  Google Scholar 

  6. Chen TK, Knicely DH, Grams ME (2019) Chronic kidney disease diagnosis and management: a review. JAMA 322(13):1294–1304. https://doi.org/10.1001/jama.2019.14745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Copur S, Yavuz F, Sag AA (2022) Future of kidney imaging: functional magnetic resonance imaging and kidney disease progression. Eur J Clin Invest 52(5):e13765. https://doi.org/10.1111/eci.13765

    Article  PubMed  Google Scholar 

  8. Cox EF, Buchanan CE, Bradley CR (2017) Multiparametric renal magnetic resonance imaging: validation, interventions, and alterations in chronic kidney disease. Front Physiol 8:696. https://doi.org/10.3389/fphys.2017.00696

    Article  PubMed  PubMed Central  Google Scholar 

  9. Drawz P, Rahman M (2015) Chronic kidney disease. Ann Inter Med. https://doi.org/10.7326/aitc201506020

    Article  Google Scholar 

  10. Echeverria-Chasco R, Vidorreta M, Aramendía-Vidaurreta V (2021) Optimization of pseudo-continuous arterial spin labeling for renal perfusion imaging. Magn Reson Med 85(3):1507–1521. https://doi.org/10.1002/mrm.28531

    Article  PubMed  Google Scholar 

  11. Epstein FH (1997) Oxygen and renal metabolism. Kidney Int 51(2):381–385. https://doi.org/10.1038/ki.1997.50

    Article  CAS  PubMed  Google Scholar 

  12. Evans RG, Ince C, Joles JA (2013) Haemodynamic influences on kidney oxygenation: clinical implications of integrative physiology. Clin Exp Pharmacol Physiol 40(2):106–122. https://doi.org/10.1111/1440-1681.12031

    Article  CAS  PubMed  Google Scholar 

  13. Ferré JC, Bannier E, Raoult H (2013) Arterial spin labeling (ASL) perfusion: techniques and clinical use. Diagn Interv Imaging 94(12):1211–1223. https://doi.org/10.1016/j.diii.2013.06.010

    Article  PubMed  Google Scholar 

  14. Fine LG, Norman JT (2008) Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics. Kidney Int 74(7):867–872. https://doi.org/10.1038/ki.2008.350

    Article  CAS  PubMed  Google Scholar 

  15. Fine LG, Orphanides C, Norman JT (1998) Progressive renal disease: the chronic hypoxia hypothesis, kidney international. Supplement 65:S74-78

    CAS  Google Scholar 

  16. Gillis KA, McComb C, Patel RK (2016) Non-Contrast renal magnetic resonance imaging to assess perfusion and corticomedullary differentiation in health and chronic kidney disease. Nephron 133(3):183–192. https://doi.org/10.1159/000447601

    Article  PubMed  Google Scholar 

  17. Glassock RJ, Warnock DG, Delanaye P (2017) The global burden of chronic kidney disease: estimates, variability and pitfalls. Nat Rev Nephrol 13(2):104–114. https://doi.org/10.1038/nrneph.2016.163

    Article  CAS  PubMed  Google Scholar 

  18. Hansell P, Welch WJ, Blantz RC (2013) Determinants of kidney oxygen consumption and their relationship to tissue oxygen tension in diabetes and hypertension. Clin Exp Pharmacol Physiol 40(2):123–137. https://doi.org/10.1111/1440-1681.12034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hutton B, Salanti G, Caldwell DM (2015) The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med 162(11):777–784. https://doi.org/10.7326/m14-2385

    Article  PubMed  Google Scholar 

  20. Kannenkeril D, Janka R, Bosch A (2021) Detection of changes in renal blood flow using arterial spin labeling MRI. Am J Nephrol 52(1):69–75. https://doi.org/10.1159/000513665

    Article  PubMed  Google Scholar 

  21. Ladd ME (2007) High-field-strength magnetic resonance: potential and limits. Topi Magn Reson Imag TMRI 18(2):139–152. https://doi.org/10.1097/RMR.0b013e3180f612b3

    Article  Google Scholar 

  22. Li C, Liu H, Li X (2019) Application of BOLD-MRI in the classification of renal function in chronic kidney disease. Abdominal Radiol (New York) 44(2):604–611. https://doi.org/10.1007/s00261-018-1750-6

    Article  Google Scholar 

  23. Li LP, Tan H, Thacker JM (2017) Evaluation of renal blood flow in chronic kidney disease using arterial spin labeling perfusion magnetic resonance imaging. Kidney Inter Rep 2(1):36–43. https://doi.org/10.1016/j.ekir.2016.09.003

    Article  Google Scholar 

  24. Li X, Li C, Liu H (2020) Revealing the decrease of renal cortical perfusion in primary glomerular disease and renal aging by arterial spin labeling. Iranian J Radiol. https://doi.org/10.5812/iranjradiol.96147

    Article  Google Scholar 

  25. Lindner T, Bolar DS, Achten E (2023) Current state and guidance on arterial spin labeling perfusion MRI in clinical neuroimaging. Magn Reson Med 89(5):2024–2047. https://doi.org/10.1002/mrm.29572

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lu F, Yang J, Yang S (2021) Use of three-dimensional arterial spin labeling to evaluate renal perfusion in patients with chronic kidney disease. J Magn Reson Imag JMRI 54(4):1152–1163. https://doi.org/10.1002/jmri.27609

    Article  Google Scholar 

  27. Mao W, Ding Y, Ding X (2022) Capability of arterial spin labeling and intravoxel incoherent motion diffusion-weighted imaging to detect early kidney injury in chronic kidney disease. Eur Radiol. https://doi.org/10.1007/s00330-022-09331-z

    Article  PubMed  PubMed Central  Google Scholar 

  28. McInnes MDF, Moher D, Thombs BD (2018) Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: The PRISMA-DTA statement. JAMA 319(4):388–396. https://doi.org/10.1001/jama.2017.19163

    Article  PubMed  Google Scholar 

  29. Neugarten J, Golestaneh L (2014) Blood oxygenation level-dependent MRI for assessment of renal oxygenation. Int J Nephrol Renov Dis 7:421–435. https://doi.org/10.2147/ijnrd.S42924

    Article  Google Scholar 

  30. Papageorgakis C, Firippi E, Gy B (2023) Fast WASABI post-processing: access to rapid B(0) and B(1) correction in clinical routine for CEST MRI. Magn Reson Imaging 102:203–211. https://doi.org/10.1016/j.mri.2023.06.001

    Article  CAS  PubMed  Google Scholar 

  31. Parrish AE (1992) Complications of percutaneous renal biopsy: a review of 37 years’ experience. Clin Nephrol 38(3):135–141

    CAS  PubMed  Google Scholar 

  32. Prasad PV, Li LP, Hack B (2023) Quantitative blood oxygenation level dependent magnetic resonance imaging for estimating intra-renal oxygen availability demonstrates kidneys are hypoxemic in human CKD. Kidney int rep 8(5):1057–1067. https://doi.org/10.1016/j.ekir.2023.02.1092

    Article  PubMed  PubMed Central  Google Scholar 

  33. Prasad PV, Li LP, Thacker JM (2019) Cortical perfusion and tubular function as evaluated by magnetic resonance imaging correlates with annual loss in renal function in moderate chronic kidney disease. Am J Nephrol 49(2):114–124. https://doi.org/10.1159/000496161

    Article  CAS  PubMed  Google Scholar 

  34. Prasad PV, Thacker J, Li LP (2015) Multi-parametric evaluation of chronic kidney disease by MRI: a preliminary cross-sectional study. PLoS ONE 10(10):e0139661. https://doi.org/10.1371/journal.pone.0139661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pruijm M, Milani B, Pivin E (2018) Reduced cortical oxygenation predicts a progressive decline of renal function in patients with chronic kidney disease. Kidney Int 93(4):932–940. https://doi.org/10.1016/j.kint.2017.10.020

    Article  PubMed  Google Scholar 

  36. Rossi C, Artunc F, Martirosian P (2012) Histogram analysis of renal arterial spin labeling perfusion data reveals differences between volunteers and patients with mild chronic kidney disease. Invest Radiol 47(8):490–496. https://doi.org/10.1097/RLI.0b013e318257063a

    Article  PubMed  Google Scholar 

  37. Sandrasegaran K (2014) Functional MR imaging of the abdomen. Radiol Clin North Am 52(4):883–903. https://doi.org/10.1016/j.rcl.2014.02.018

    Article  PubMed  Google Scholar 

  38. Shlipak MG, Tummalapalli SL, Boulware LE (2021) The case for early identification and intervention of chronic kidney disease: conclusions from a kidney disease: improving global outcomes (KDIGO) controversies conference. Kidney Int 99(1):34–47. https://doi.org/10.1016/j.kint.2020.10.012

    Article  PubMed  Google Scholar 

  39. Tarzamni MK, Nezami N, Rashid RJ (2008) Anatomical differences in the right and left renal arterial patterns. Folia Morphol (Warsz) 67(2):104–110

    CAS  PubMed  Google Scholar 

  40. Thacker JM, Li LP, Li W (2015) Renal blood oxygenation level-dependent magnetic resonance Imaging: a Sensitive and objective analysis. Invest Radiol 50(12):821–827. https://doi.org/10.1097/rli.0000000000000190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thatipelli MR, Sabater EA, Bjarnason H (2007) CT angiography of renal artery anatomy for evaluating embolic protection devices. J Vasc Interv Radiol JVIR 18(7):842–846. https://doi.org/10.1016/j.jvir.2007.04.030

    Article  PubMed  Google Scholar 

  42. Whiting PF, Rutjes AW, Westwood ME (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155(8):529–536. https://doi.org/10.7326/0003-4819-155-8-201110180-00009

    Article  PubMed  Google Scholar 

  43. Wouters OJ, O’Donoghue DJ, Ritchie J (2015) Early chronic kidney disease: diagnosis, management and models of care. Nat Rev Nephrol 11(8):491–502. https://doi.org/10.1038/nrneph.2015.85

    Article  PubMed  PubMed Central  Google Scholar 

  44. Xin-Long P, Jing-Xia X, Jian-Yu L (2012) A preliminary study of blood-oxygen-level-dependent MRI in patients with chronic kidney disease. Magn Reson Imaging 30(3):330–335. https://doi.org/10.1016/j.mri.2011.10.003

    Article  PubMed  Google Scholar 

  45. Zhou H, Si Y, Sun J (2023) Effectiveness of functional magnetic resonance imaging for early identification of chronic kidney disease: a systematic review and network meta-analysis. Eur J Radiol 160:110694. https://doi.org/10.1016/j.ejrad.2023.110694

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Professor Jinhui Tian from the Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University for his guidance on the methodology. The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Hang.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3218 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, L.Q., Ma, L.L., Shi, L.Y. et al. Functional magnetic resonance imaging for staging chronic kidney disease: a systematic review and meta-analysis. Int Urol Nephrol (2024). https://doi.org/10.1007/s11255-024-04055-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11255-024-04055-z

Keywords

Navigation