Skip to main content

Advertisement

Log in

Anti-inflammation properties of resveratrol in the detrusor smooth muscle of the diabetic rat

  • Urology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

In this paper, we aimed to prove that resveratrol can inhibit inflammation in the detrusor smooth muscle of diabetic rats, which may provide a new direction for diabetic cystopathy (DCP) treatment.

Methods

We induced a Sprague–Dawley (SD) rat model of type 1 diabetes by intraperitoneal injections of streptozotocin (STZ). Then, we separated the SD rats into four groups: (1) an excipient-treated control group; (2) a resveratrol-treated control group; (3) an excipient-treated streptozotocin (STZ)-injected group; and (4) a resveratrol-treated STZ-injected group. We administered the resveratrol or excipient by intragastric administration. After 12 weeks of diabetes induction, we measured the blood–sugar concentrations and bladder weights, and we took the bladder tissues of each group of rats for hematoxylin–eosin staining to observe the histological changes. We used real-time quantitative polymerase chain reaction (qPCR) and Western blotting to analyze the expression levels of tumor necrosis factor-alpha (TNF-α), nuclear factor kappa B (NF-κB), interleukin (IL)-6, and IL-1β.

Results

The bodyweights of the diabetic rats were appreciably reduced, while the bladder weights and blood–glucose concentrations were substantially increased. Oral resveratrol could not improve the changes in the bodyweights and blood–glucose concentrations, but it had a certain effect on the bladder weights. In a macroscopic evaluation, the bladder walls of the STZ-induced diabetes rats were thickened, and, from the H&E staining, we could see that the bladder tissues of the diabetic rats had inflammatory cell infiltration, edema, and the capillary congestion of the mucosa and lamina propria. After resveratrol treatment, the bladder-wall thickening was reduced, and the tissue damage and inflammation were significantly ameliorated. We could associate all these changes with markedly heightened expressions of TNF-α, IL-1β, IL-6, and NF-κB in the detrusor smooth muscle (DSM) tissues of the diabetic rats. Oral treatment with resveratrol alleviated the expressivity of the inflammatory cytokines in the DSM tissues.

Conclusions

Resveratrol treatment ameliorated the histological changes in the bladder and inhibited the expressions of DSM–tissue inflammatory factors in diabetes rats. Resveratrol may provide a new direction of research for the treatment of diabetic cystopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Forbes JM, Cooper ME (2013) Mechanisms of diabetic complications. Physiol Rev 93(1):137–188. https://doi.org/10.1152/physrev.00045.2011

    Article  CAS  PubMed  Google Scholar 

  2. Arrellano-Valdez F, Urrutia-Osorio M, Arroyo C, Soto-Vega E (2014) A comprehensive review of urologic complications in patients with diabetes. Springerplus 3:549. https://doi.org/10.1186/2193-1801-3-549

    Article  PubMed  PubMed Central  Google Scholar 

  3. Daneshgari F, Liu G, Birder L, Hanna-Mitchell AT, Chacko S (2009) Diabetic bladder dysfunction: current translational knowledge. J Urol 182(6 Suppl):S18-26. https://doi.org/10.1016/j.juro.2009.08.070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Daneshgari F, Liu G, Imrey PB (2006) Time dependent changes in diabetic cystopathy in rats include compensated and decompensated bladder function. J Urol 176(1):380–386. https://doi.org/10.1016/s0022-5347(06)00582-9

    Article  PubMed  Google Scholar 

  5. Moller CF, Olesen KP (1976) Diabetic cystopathy. IV: micturition cystourethrography compared with urodynamic investigation. Danish Med Bull 23(6):291–294

    CAS  PubMed  Google Scholar 

  6. Moller CF (1976) Diabetic cystopathy. III: urinary bladder dysfunction in relation to bacteriuria. Danish Med Bull 23(6):287–291

    CAS  PubMed  Google Scholar 

  7. Fayyad AM, Hill SR, Jones G (2009) Prevalence and risk factors for bothersome lower urinary tract symptoms in women with diabetes mellitus from hospital-based diabetes clinic. Int Urogynecol J Pelvic Floor Dysfunct 20(11):1339–1344. https://doi.org/10.1007/s00192-009-0949-z

    Article  PubMed  Google Scholar 

  8. Yoshimura N, Chancellor MB, Andersson KE, Christ GJ (2005) Recent advances in understanding the biology of diabetes-associated bladder complications and novel therapy. BJU Int 95(6):733–738. https://doi.org/10.1111/j.1464-410X.2005.05392.x

    Article  PubMed  Google Scholar 

  9. Wang CC, Nagatomi J, Toosi KK, Yoshimura N, Hsieh JH, Chancellor MB, Sacks MS (2009) Diabetes-induced alternations in biomechanical properties of urinary bladder wall in rats. Urology 73(4):911–915. https://doi.org/10.1016/j.urology.2008.11.026

    Article  PubMed  Google Scholar 

  10. Navarro JF, Mora C (2005) Role of inflammation in diabetic complications. Nephrol Dial Transplant 20(12):2601–2604. https://doi.org/10.1093/ndt/gfi155

    Article  PubMed  Google Scholar 

  11. Wang-Fischer Y, Garyantes T (2018) Improving the reliability and utility of streptozotocin-induced rat diabetic model. J Diabetes Res 2018:8054073. https://doi.org/10.1155/2018/8054073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Akash MS, Rehman K, Chen S (2013) Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J Cell Biochem 114(3):525–531. https://doi.org/10.1002/jcb.24402

    Article  CAS  PubMed  Google Scholar 

  13. Wang Z, Cheng Z, Cristofaro V, Li J, Xiao X, Gomez P, Ge R, Gong E, Strle K, Sullivan MP, Adam RM, White MF, Olumi AF (2012) Inhibition of TNF-α improves the bladder dysfunction that is associated with type 2 diabetes. Diabetes 61(8):2134–2145. https://doi.org/10.2337/db11-1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ding H, Zhang P, Li N, Liu Y, Wang P (2019) The phosphodiesterase type 4 inhibitor roflumilast suppresses inflammation to improve diabetic bladder dysfunction rats. Int Urol Nephrol 51(2):253–260. https://doi.org/10.1007/s11255-018-2038-z

    Article  CAS  PubMed  Google Scholar 

  15. Schöppner A, Kindl H (1984) Purification and properties of a stilbene synthase from induced cell suspension cultures of peanut. J Biol Chem 259(11):6806–6811. https://doi.org/10.1016/s0021-9258(17)39799-5

    Article  PubMed  Google Scholar 

  16. Zhong M, Cheng GF, Wang WJ, Guo Y, Zhu XY, Zhang JT (1999) Inhibitory effect of resveratrol on interleukin 6 release by stimulated peritoneal macrophages of mice. Phytomedicine 6(2):79–84. https://doi.org/10.1016/s0944-7113(99)80039-7

    Article  CAS  PubMed  Google Scholar 

  17. Birrell MA, McCluskie K, Wong S, Donnelly LE, Barnes PJ, Belvisi MG (2005) Resveratrol, an extract of red wine, inhibits lipopolysaccharide induced airway neutrophilia and inflammatory mediators through an NF-kappaB-independent mechanism. FASEB J 19(7):840–841. https://doi.org/10.1096/fj.04-2691fje

    Article  CAS  PubMed  Google Scholar 

  18. Wang XL, Li T, Li JH, Miao SY, Xiao XZ (2017) The effects of resveratrol on inflammation and oxidative stress in a rat model of chronic obstructive pulmonary disease. Molecules. https://doi.org/10.3390/molecules22091529

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gocmez SS, Sahin TD, Yazir Y, Duruksu G, Eraldemir FC, Polat S, Utkan T (2019) Resveratrol prevents cognitive deficits by attenuating oxidative damage and inflammation in rat model of streptozotocin diabetes induced vascular dementia. Physiol Behav 201:198–207. https://doi.org/10.1016/j.physbeh.2018.12.012

    Article  CAS  PubMed  Google Scholar 

  20. Yin L, Chen X, Li N, Jia W, Wang N, Hou B, Yang H, Zhang L, Qiang G, Yang X, Du G (2021) Puerarin ameliorates skeletal muscle wasting and fiber type transformation in STZ-induced type 1 diabetic rats. Biomed Pharmacother 133:110977. https://doi.org/10.1016/j.biopha.2020.110977

    Article  CAS  PubMed  Google Scholar 

  21. Ma KL, Liu L, Zhang Y, Wang GH, Hu ZB, Chen PP, Lu J, Lu CC, Gong TK, Gong YX, Liu BC (2019) Aspirin attenuates podocyte injury in diabetic rats through overriding cyclooxygenase-2-mediated dysregulation of LDL receptor pathway. Int Urol Nephrol 51(3):551–558. https://doi.org/10.1007/s11255-018-2059-7

    Article  CAS  PubMed  Google Scholar 

  22. Daneshgari F, Huang X, Liu G, Bena J, Saffore L, Powell CT (2006) Temporal differences in bladder dysfunction caused by diabetes, diuresis, and treated diabetes in mice. Am J Physiol Regul Integr Comp Physiol 290(6):R1728-1735. https://doi.org/10.1152/ajpregu.00654.2005

    Article  CAS  PubMed  Google Scholar 

  23. Zhang J, Zhang Y, Yang X, Wang J, Xu Y, Wang R, Tan B, Huang P, Cao H (2020) Diabetic bladder dysfunction in T2D KK-Ay mice and its changes in the level of relevant gene expression. Biomed Pharmacother 131:110706. https://doi.org/10.1016/j.biopha.2020.110706

    Article  CAS  PubMed  Google Scholar 

  24. Chen R, Ji L, Chen L, Chen L, Cai D, Feng B, Kuang H, Li H, Li Y, Liu J, Shan Z, Sun Z, Tian H, Xu Z, Xu Y, Yang Y, Yang L, Yu X, Zhu D, Zou D (2015) Glycemic control rate of T2DM outpatients in China: a multi-center survey. Med Sci Monit 21:1440–1446. https://doi.org/10.12659/msm.892246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Daneshgari F, Moore C (2006) Diabetic uropathy. Semin Nephrol 26(2):182–185. https://doi.org/10.1016/j.semnephrol.2005.09.009

    Article  PubMed  Google Scholar 

  26. Yuan Z, Tang Z, He C, Tang W (2015) Diabetic cystopathy: a review. J Diabetes 7(4):442–447. https://doi.org/10.1111/1753-0407.12272

    Article  PubMed  Google Scholar 

  27. Golbidi S, Laher I (2010) Bladder dysfunction in diabetes mellitus. Front Pharmacol 1:136. https://doi.org/10.3389/fphar.2010.00136

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gomez CS, Kanagarajah P, Gousse AE (2011) Bladder dysfunction in patients with diabetes. Curr Urol Rep 12(6):419–426. https://doi.org/10.1007/s11934-011-0214-0

    Article  PubMed  Google Scholar 

  29. Beshay E, Carrier S (2004) Oxidative stress plays a role in diabetes-induced bladder dysfunction in a rat model. Urology 64(5):1062–1067. https://doi.org/10.1016/j.urology.2004.06.021

    Article  PubMed  Google Scholar 

  30. Liu G, Daneshgari F (2014) Diabetic bladder dysfunction. Chin Med J 127(7):1357–1364

    PubMed  Google Scholar 

  31. Luc K, Schramm-Luc A, Guzik TJ, Mikolajczyk TP (2019) Oxidative stress and inflammatory markers in prediabetes and diabetes. J Physiol Pharmacol. https://doi.org/10.26402/jpp.2019.6.01

    Article  PubMed  Google Scholar 

  32. Ola MS, Aleisa AM, Al-Rejaie SS, Abuohashish HM, Parmar MY, Alhomida AS, Ahmed MM (2014) Flavonoid, morin inhibits oxidative stress, inflammation and enhances neurotrophic support in the brain of streptozotocin-induced diabetic rats. Neurol Sci 35(7):1003–1008. https://doi.org/10.1007/s10072-014-1628-5

    Article  PubMed  Google Scholar 

  33. Cai Z, Zhao Y, Yao S, Bin Zhao B (2011) Increases in β-amyloid protein in the hippocampus caused by diabetic metabolic disorder are blocked by minocycline through inhibition of NF-κB pathway activation. Pharmacol Rep 63(2):381–391. https://doi.org/10.1016/s1734-1140(11)70504-7

    Article  CAS  PubMed  Google Scholar 

  34. Prabhakar O (2013) Cerebroprotective effect of resveratrol through antioxidant and anti-inflammatory effects in diabetic rats. Naunyn Schmiedebergs Arch Pharmacol 386(8):705–710. https://doi.org/10.1007/s00210-013-0871-2

    Article  CAS  PubMed  Google Scholar 

  35. Rai RC, Bagul PK, Banerjee SK (2020) NLRP3 inflammasome drives inflammation in high fructose fed diabetic rat liver: effect of resveratrol and metformin. Life Sci 253:117727. https://doi.org/10.1016/j.lfs.2020.117727

    Article  CAS  PubMed  Google Scholar 

  36. Riba A, Deres L, Sumegi B, Toth K, Szabados E, Halmosi R (2017) Cardioprotective effect of resveratrol in a postinfarction heart failure model. Oxid Med Cell Longev 2017:6819281. https://doi.org/10.1155/2017/6819281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cai TT, Ye XL, Li RR, Chen H, Wang YY, Yong HJ, Pan ML, Lu W, Tang Y, Miao H, Snijders AM, Mao JH, Liu XY, Lu YB, Ding DF (2020) Resveratrol modulates the gut microbiota and inflammation to protect against diabetic nephropathy in mice. Front Pharmacol 11:1249. https://doi.org/10.3389/fphar.2020.01249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rehman K, Akash MSH (2017) Mechanism of generation of oxidative stress and pathophysiology of type 2 diabetes mellitus: how are they interlinked? J Cell Biochem 118(11):3577–3585. https://doi.org/10.1002/jcb.26097

    Article  CAS  PubMed  Google Scholar 

  39. King GL (2008) The role of inflammatory cytokines in diabetes and its complications. J Periodontol 79(8 Suppl):1527–1534. https://doi.org/10.1902/jop.2008.080246

    Article  CAS  PubMed  Google Scholar 

  40. Olefsky JM, Glass CK (2010) Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72:219–246. https://doi.org/10.1146/annurev-physiol-021909-135846

    Article  CAS  PubMed  Google Scholar 

  41. Yoon J, Ryoo S (2013) Arginase inhibition reduces interleukin-1beta-stimulated vascular smooth muscle cell proliferation by increasing nitric oxide synthase-dependent nitric oxide production. Biochem Biophys Res Commun 435(3):428–433. https://doi.org/10.1016/j.bbrc.2013.05.002

    Article  CAS  PubMed  Google Scholar 

  42. Rotondo S, Rajtar G, Manarini S, Celardo A, Rotillo D, de Gaetano G, Evangelista V, Cerletti C (1998) Effect of trans-resveratrol, a natural polyphenolic compound, on human polymorphonuclear leukocyte function. Br J Pharmacol 123(8):1691–1699. https://doi.org/10.1038/sj.bjp.0701784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Martinez J, Moreno JJ (2000) Effect of resveratrol, a natural polyphenolic compound, on reactive oxygen species and prostaglandin production. Biochem Pharmacol 59(7):865–870. https://doi.org/10.1016/s0006-2952(99)00380-9

    Article  CAS  PubMed  Google Scholar 

  44. Feng YH, Zou JP, Li XY (2002) Effects of resveratrol and ethanol on production of pro-inflammatory factors from endotoxin activated murine macrophages. Acta Pharmacol Sin 23(11):1002–1006

    CAS  PubMed  Google Scholar 

  45. Cianciulli A, Calvello R, Cavallo P, Dragone T, Carofiglio V, Panaro MA (2012) Modulation of NF-κB activation by resveratrol in LPS treated human intestinal cells results in downregulation of PGE2 production and COX-2 expression. Toxicol In Vitro 26(7):1122–1128. https://doi.org/10.1016/j.tiv.2012.06.015

    Article  CAS  PubMed  Google Scholar 

  46. Lee HY, Kim IK, Yoon HK, Kwon SS, Rhee CK, Lee SY (2017) Inhibitory effects of resveratrol on airway remodeling by transforming growth factor-beta/smad signaling pathway in chronic asthma model. Allergy Asthma Immunol Res 9(1):25–34. https://doi.org/10.4168/aair.2017.9.1.25

    Article  PubMed  Google Scholar 

  47. Xu D, Li Y, Zhang B, Wang Y, Liu Y, Luo Y, Niu W, Dong M, Liu M, Dong H, Zhao P, Li Z (2016) Resveratrol alleviate hypoxic pulmonary hypertension via anti-inflammation and anti-oxidant pathways in rats. Int J Med Sci 13(12):942–954. https://doi.org/10.7150/ijms.16810

    Article  PubMed  PubMed Central  Google Scholar 

  48. He Y, Zeng H, Yu Y, Zhang J, Duan X, Liu Q, Yang B (2017) Resveratrol improves smooth muscle carcinogenesis in the progression of chronic prostatitis via the downregulation of c-kit/SCF by activating Sirt1. Biomed Pharmacother 95:161–166. https://doi.org/10.1016/j.biopha.2017.08.064

    Article  CAS  PubMed  Google Scholar 

  49. Huang DD, Shi G, Jiang Y, Yao C, Zhu C (2020) A review on the potential of Resveratrol in prevention and therapy of diabetes and diabetic complications. Biomed Pharmacother 125:109767. https://doi.org/10.1016/j.biopha.2019.109767

    Article  CAS  PubMed  Google Scholar 

  50. Wen D, Huang X, Zhang M, Zhang L, Chen J, Gu Y, Hao CM (2013) Resveratrol attenuates diabetic nephropathy via modulating angiogenesis. PLoS ONE 8(12):e82336. https://doi.org/10.1371/journal.pone.0082336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Aktas HS, Ozel Y, Ahmad S, Pence HH, Ayaz-Adakul B, Kudas I, Tetik S, Sekerler T, Canbey-Goret C, Kabasakal L, Elcioglu HK (2019) Protective effects of resveratrol on hepatic ischemia reperfusion injury in streptozotocin-induced diabetic rats. Mol Cell Biochem 460(1–2):217–224. https://doi.org/10.1007/s11010-019-03582-z

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the educational department of Liaoning Province No. QN2019018 grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Li.

Ethics declarations

Conflict of interest

All the authors declare that there is no conflict of interest.

Ethical approval

All applicable International, National, and Institutional Guidelines on the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Du, H., Hou, J. et al. Anti-inflammation properties of resveratrol in the detrusor smooth muscle of the diabetic rat. Int Urol Nephrol 54, 2833–2843 (2022). https://doi.org/10.1007/s11255-022-03334-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-022-03334-x

Keywords

Navigation