Skip to main content
Log in

Comparing different markers of tubular dysfunction in transfusion-dependent thalassemia patients

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Background

Renal tubular dysfunction was reported in transfusion-dependent thalassemia (TDT) patients and ranges from mild to severe. The objectives of our study were identification of the best marker of early renal tubular dysfunction in TDT patients among the three most commonly used urinary biomarkers, named neutrophil gelatinase-associated lipocalin (NGAL), retinol-binding protein (RBP) and N-acetyl-D-glucosaminidase (NAG) and correlation of these biomarkers with different patient variables.

Methodology

Sixty-one TDT patients and another 62 healthy children were enrolled in a cross-sectional study. Morning urine samples were taken for measurement of calcium, phosphorus, creatinine, microalbumin and markers of tubular dysfunction (NGAL, NAG and RBP). Urine NGAL/creatinine (UrNGAL/Cr), urine NAG/creatinine (UrNAG/Cr) and urine RBP/creatinine (UrRBP/Cr) ratios were used for accuracy. Patients were classified into 2 groups: group A, with tubular dysfunction and group b, without tubular dysfunction.

Results

Group A showed statistically significant higher UrNGAL/Cr (p < 0.001), UrRBP/Cr (p < 0.001) and UrNAG/Cr (p <0.001) than group B. In group A, microalbuminuria was detected only in 7 patients (28%) while it was detected in 12 patients (33.3%) in group B. By using ROC curve analysis, the diagnostic cutoff values for UrNGAL/Cr, UrRBP/Cr and UrNAG/Cr were 3713.38, 1614.85 and 56.56 ng/g, respectively. We found a statistically significant superiority of UrNGAL/Cr over UrRBP/Cr (p < 0.001) and UrRBP/Cr over UrNAG/Cr (p < 0.001).

Conclusion

Evaluation of UrNGAL/Cr, UrRBP/Cr and UrNAG/Cr could early discriminate tubular dysfunction TDT patients from those with normal tubular function. UrNGAL/Cr is more accurate in early detection of tubular dysfunction when compared with the other two biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tantawy AA, El Bablawy N, Adly AA, Ebeid FS (2014) Early predictors of renal dysfunction in egyptian patients with beta-thalassemia major and intermedia. Mediterr J Hematol Infect Dis 6(1):e2014057. https://doi.org/10.4084/MJHID.2014.057

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hamed EA, ElMelegy NT (2010) Renal functions in pediatric patients with beta-thalassemia major: relation to chelation therapy: original prospective study. Ital J Pediatr 36:39. https://doi.org/10.1186/1824-7288-36-39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nickavar A, Qmarsi A, Ansari S, Zarei E (2017) Kidney Function in Patients With Different Variants of Beta-Thalassemia. Iran J Kidney Dis 11(2):132–137

    PubMed  Google Scholar 

  4. Annayev A, Karakas Z, Karaman S, Yalciner A, Yilmaz A, Emre S (2018) Glomerular and tubular functions in children and adults with transfusion-dependent thalassemia. Turk J Haematol 35(1):66–70. https://doi.org/10.4274/tjh.2017.0266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mohkam M, Shamsian BS, Gharib A, Nariman S, Arzanian MT (2008) Early markers of renal dysfunction in patients with beta-thalassemia major. Pediatr Nephrol 23(6):971–976. https://doi.org/10.1007/s00467-008-0753-x

    Article  PubMed  Google Scholar 

  6. Jalali A, Khalilian H, Ahmadzadeh A, Sarvestani S, Rahim F, Zandian K, Asar S (2011) Renal function in transfusion-dependent pediatric beta-thalassemia major patients. Hematology 16(4):249–254. https://doi.org/10.1179/102453311X12953015767662

    Article  CAS  PubMed  Google Scholar 

  7. Aldudak B, Karabay Bayazit A, Noyan A, Ozel A, Anarat A, Sasmaz I, Kilinc Y, Gali E, Anarat R, Dikmen N (2000) Renal function in pediatric patients with beta-thalassemia major. Pediatr Nephrol 15(1–2):109–112. https://doi.org/10.1007/s004670000434

    Article  CAS  PubMed  Google Scholar 

  8. Koliakos G, Papachristou F, Koussi A, Perifanis V, Tsatra I, Souliou E, Athanasiou M (2003) Urine biochemical markers of early renal dysfunction are associated with iron overload in beta-thalassaemia. Clin Lab Haematol 25(2):105–109. https://doi.org/10.1046/j.1365-2257.2003.00507.x

    Article  CAS  PubMed  Google Scholar 

  9. Smolkin V, Halevy R, Levin C, Mines M, Sakran W, Ilia K, Koren A (2008) Renal function in children with beta-thalassemia major and thalassemia intermedia. Pediatr Nephrol 23(10):1847–1851. https://doi.org/10.1007/s00467-008-0897-8

    Article  PubMed  Google Scholar 

  10. Economou M, Printza N, Teli A, Tzimouli V, Tsatra I, Papachristou F, Athanassiou-Metaxa M (2010) Renal dysfunction in patients with beta-thalassemia major receiving iron chelation therapy either with deferoxamine and deferiprone or with deferasirox. Acta Haematol 123(3):148–152. https://doi.org/10.1159/000287238

    Article  CAS  PubMed  Google Scholar 

  11. Schwartz GJ, Furth SL (2007) Glomerular filtration rate measurement and estimation in chronic kidney disease. Pediatr Nephrol 22(11):1839–1848. https://doi.org/10.1007/s00467-006-0358-1

    Article  PubMed  Google Scholar 

  12. Delanaye P, Rozet E, Krzesinski JM, Cavalier E (2011) Urinary NGAL measurement: biological variation and ratio to creatinine. Clin Chim Acta 412(3–4):390. https://doi.org/10.1016/j.cca.2010.10.011

    Article  CAS  PubMed  Google Scholar 

  13. Lapatsanis P, Sbyrakis S, Vertos C, Karaklis BA, Dosiadis S (1976) Phosphaturia in thalassemia. Pediatrics 58(6):885–892

    Article  CAS  Google Scholar 

  14. Grundy RG, Woods KA, Savage MO, Evans JP (1994) Relationship of endocrinopathy to iron chelation status in young patients with thalassaemia major. Arch Dis Child 71(2):128–132. https://doi.org/10.1136/adc.71.2.128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lai ME, Spiga A, Vacquer S, Carta MP, Corrias C, Ponticelli C (2012) Renal function in patients with beta-thalassaemia major: a long-term follow-up study. Nephrol Dial Transplant 27(9):3547–3551. https://doi.org/10.1093/ndt/gfs169

    Article  CAS  PubMed  Google Scholar 

  16. Uzun E, Balci YI, Yuksel S, Aral YZ, Aybek H, Akdag B (2015) Glomerular and tubular functions in children with different forms of beta thalassemia. Ren Fail 37(9):1414–1418. https://doi.org/10.3109/0886022X.2015.1077314

    Article  CAS  PubMed  Google Scholar 

  17. Fassett RG, Venuthurupalli SK, Gobe GC, Coombes JS, Cooper MA, Hoy WE (2011) Biomarkers in chronic kidney disease: a review. Kidney Int 80(8):806–821. https://doi.org/10.1038/ki.2011.198

    Article  CAS  PubMed  Google Scholar 

  18. Schrezenmeier EV, Barasch J, Budde K, Westhoff T, Schmidt-Ott KM (2017) Biomarkers in acute kidney injury–pathophysiological basis and clinical performance. Acta Physiol (Oxf) 219(3):554–572. https://doi.org/10.1111/apha.12764

    Article  CAS  Google Scholar 

  19. Skalova S (2005) The diagnostic role of urinary N-acetyl-beta-D-glucosaminidase (NAG) activity in the detection of renal tubular impairment. Acta Medica (Hradec Kralove) 48(2):75–80

    Article  CAS  Google Scholar 

  20. Domingos MA, Moreira SR, Gomez L, Goulart A, Lotufo PA, Bensenor I, Titan S (2016) Urinary retinol-binding protein: relationship to renal function and cardiovascular risk factors in chronic kidney disease. PLoS ONE 11(9):e0162782. https://doi.org/10.1371/journal.pone.0162782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Comper WD, Hilliard LM, Nikolic-Paterson DJ, Russo LM (2008) Disease-dependent mechanisms of albuminuria. Am J Physiol Renal Physiol 295(6):F1589-1600. https://doi.org/10.1152/ajprenal.00142.2008

    Article  CAS  PubMed  Google Scholar 

  22. Sen V, Ece A, Uluca U, Soker M, Gunes A, Kaplan I, Tan I, Yel S, Mete N, Sahin C (2015) Urinary early kidney injury molecules in children with beta-thalassemia major. Ren Fail 37(4):607–613. https://doi.org/10.3109/0886022X.2015.1007871

    Article  CAS  PubMed  Google Scholar 

  23. Sisman P, Gul OO, Dirican M, Bal AS, Cander S, Erturk E (2020) Urinary neutrophil gelatinase-associated lipocalin (NGAL) as a marker of diabetic nephropathy in type 1 diabetic patients. Clin Lab. https://doi.org/10.7754/Clin.Lab.2019.190326

    Article  PubMed  Google Scholar 

  24. Ahmadzadeh A, Jalali A, Assar S, Khalilian H, Zandian K, Pedram M (2011) Renal tubular dysfunction in pediatric patients with beta-thalassemia major. Saudi J Kidney Dis Transpl 22(3):497–500

    PubMed  Google Scholar 

  25. Musallam KM, Taher AT (2012) Mechanisms of renal disease in beta-thalassemia. J Am Soc Nephrol 23(8):1299–1302. https://doi.org/10.1681/ASN.2011111070

    Article  CAS  PubMed  Google Scholar 

  26. Hashemieh M, Radfar M, Azarkeivan A, Hosseini Tabatabaei SMT, Nikbakht S, Yaseri M, Sheibani K (2017) Renal Hemosiderosis among Iranian transfusion dependent beta-thalassemia major patients. Int J Hematol Oncol Stem Cell Res 11(2):133–138

    PubMed  PubMed Central  Google Scholar 

  27. Ponticelli C, Musallam KM, Cianciulli P, Cappellini MD (2010) Renal complications in transfusion-dependent beta thalassaemia. Blood Rev 24(6):239–244. https://doi.org/10.1016/j.blre.2010.08.004

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ilham Youssry: the principle investigator- revising the manuscript. Samuel Makar: the coordinator of the team work – revising the manuscript. Khaliel Abdelkhalek: handling the patients as regard investigations and time plan-– revising the manuscript. Dina Hesham: handling the lab. Part of the study – revising the methodology and results sections. Happy Sawires: handling statistics – writing the manuscript – submitting the manuscript (the corresponding author).

Corresponding author

Correspondence to Happy Sawires.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Human and animal rights

The research does not include animals. The research does not include include clinical trials on human subjects.

Informed consent

An informed consent was obtained from patients’ caregivers.

Consent for publication

We agree to publish our manuscript in International Urology and Nephrology Journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youssry, I., Makar, S., Abdelkhalek, K. et al. Comparing different markers of tubular dysfunction in transfusion-dependent thalassemia patients. Int Urol Nephrol 54, 421–428 (2022). https://doi.org/10.1007/s11255-021-02914-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-021-02914-7

Keywords

Navigation