Skip to main content
Log in

Pentraxin-3 and adropin as inflammatory markers of early renal damage in type 2 diabetes patients

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

Renal inflammatory response is involved in the development and progression of diabetic kidney disease (DKD). We sought to evaluate pentraxin-3 (PTX3) and adropin variability as inflammatory markers among type 2 diabetes mellitus (T2DM) patients with different urinary albumin, and to examine if these factors assist in the early diagnosis of diabetic kidney disease.

Methods

We enrolled 447 T2DM patients and 100 healthy non-diabetic control subjects in this study. The patients with T2DM were divided into three groups based on their urinary albumin/creatinine ratio (UACR): the normoalbuminuric group (DM group, UACR < 30 mg/g); the microalbuminuric group (DKD1 group, 30 ≤ UACR ≤ 300 mg/g); the macroalbuminuric group (DKD2 group, UACR > 300 mg/g). The levels of PTX3 and adropin were determined by enzyme-linked immunosorbent assay (ELISA). Spearman correlation and multiple linear regression analysis were performed to determine the correlations among these inflammatory markers and other clinical parameters. Receiver operating characteristic (ROC) curves analysis was used to assess the diagnostic potential of PTX3 and adropin for DKD.

Results

Compared to non-diabetes, serum levels of PTX3 were distinctly elevated, whereas the adropin were significantly declined in diabetic patients (p < 0.05). Significantly higher levels of PTX3 and lower levels of adropin were seen in the macroalbuminuric patients compared with the microalbuminuric patients (p < 0.05). Multiple stepwise linear regression analysis showed that the control of hemoglobin A1c (HbA1c) and UACR were independent factors associated with PTX3 and adropin. In addition, ROC curves analysis showed PTX3 and adropin could be used to evaluate the early detect of DKD, further adropin might be a better marker than PTX3 in compliance with their veracity.

Conclusion

As inflammatory markers, the diverse changes of pentraxin-3 and adropin showed that they may forecast the renal damage in diabetic patients in varying degrees and link with the pathogenesis of diabetic kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hayder ZS, Kareem ZS (2020) Resistin hormone in diabetic kidney disease and its relation to iron status and hepcidin. Int Urol Nephrol 52:749–756. https://doi.org/10.1007/s11255-020-02434-w

    Article  CAS  PubMed  Google Scholar 

  2. Techatanawat S, Surarit R, Chairatvit K, Roytrakul S, Khovidhunkit W, Thanakun S, Izumi Y, Khovidhunkit SP (2019) Salivary and serum cystatin SA levels in patients with type 2 diabetes mellitus or diabetic nephropathy. Arch Oral Biol 104:67–75. https://doi.org/10.1016/j.archoralbio.2019.05.020

    Article  CAS  PubMed  Google Scholar 

  3. Galsgaard J, Persson F, Hansen TW, Jorsal A, Tarnow L, Parving HH, Rossing P (2017) Plasma high-sensitivity troponin T predicts end-stage renal disease and cardiovascular and all-cause mortality in patients with type 1 diabetes and diabetic nephropathy. Kidney Int 92(5):1242–1248. https://doi.org/10.1016/j.kint.2017.04.018

    Article  CAS  PubMed  Google Scholar 

  4. Xiao Y, Chen L, Fan Y, Yan P, Li S, Zhou X (2019) The effect of boletus polysaccharides on diabetic hepatopathy in rats. Chem Biol Interact 308:61–69. https://doi.org/10.1016/j.cbi.2019.05.013

    Article  CAS  PubMed  Google Scholar 

  5. Matoba K, Takeda Y, Nagai Y, Kawanami D, Utsunomiya K, Nishimura R (2019) Unraveling the role of inflammation in the pathogenesis of diabetic kidney disease. Int J Mol Sci 20:1–15. https://doi.org/10.3390/ijms20143393

    Article  CAS  Google Scholar 

  6. Zhu H, Yu W, Xie Y, Zhang H, Bi Y, Zhu D (2017) Association of Pentraxin 3 Gene Polymorphisms with Susceptibility to Diabetic Nephropathy. Med Sci Monit 23: 428–436. https://doi.org/10.12659/msm.902783

  7. Liu Y, Yu C, Ji K, Wang X, Li X, Xie H, Wang Y, Huang Y, Qi D, Fan H (2019) Quercetin reduces TNF-α-induced mesangial cell proliferation and inhibits PTX3 production: involvement of NF-κB signaling pathway. Phytother Res 33:2401–2408. https://doi.org/10.1002/ptr.6430

    Article  CAS  PubMed  Google Scholar 

  8. Rathore M, Girard C, Ohanna M, Tichet M, Ben Jouira R, Garcia E, Larbret F, Gesson M, Audebert S, Lacour JP, Montaudié H, Prod'Homme V, Tartare-Deckert S, Deckert M (2019) Cancer cell-derived long pentraxin 3 (PTX3) promotes melanoma migration through a toll-like receptor 4 (TLR4)/NF-κB signaling pathway. Oncogene 38:5873–5889. https://doi.org/10.1038/s41388-019-0848-9

    Article  CAS  PubMed  Google Scholar 

  9. Bako HY, Ibrahim MA, Isah MS, Ibrahim S (2019) Inhibition of JAK-STAT and NF-κB signalling systems could be a novel therapeutic target against insulin resistance and type 2 diabetes. Life Sci 239:117–125. https://doi.org/10.1016/j.lfs.2019.117045

    Article  CAS  Google Scholar 

  10. Maekawa M, Tadaki H, Tomimoto D, Okuma C, Sano R, Ishii Y, Katsuda Y, Yoshiuchi H, Kakefuda R, Ohta T, Sasase T (2019) A Novel TNF-α converting enzyme (TACE) selective inhibitor JTP-96193 prevents insulin resistance in KK-Ay type 2 diabetic mice and diabetic peripheral neuropathy in type 1 diabetic mice. Biol Pharm Bull 42:1906–1912. https://doi.org/10.1248/bpb.b19-00526

    Article  CAS  PubMed  Google Scholar 

  11. Akcılar R, Emel Koçak F, Şimşek H, Akcılar A, Bayat Z, Ece E, Kökdaşgil H (2016) The effect of adropin on lipid and glucose metabolism in rats with hyperlipidemia. Iran J Basic Med Sci 19:245–251

    PubMed  PubMed Central  Google Scholar 

  12. Yuan X, Chen R, Ouyang Q, Lin X, Ai Z, Zhang Y, Yang X (2020) Novel associations of serum adropin and lipopolysaccharide-binding protein versus lipid profiles in childhood obesity. J Pediatr Endocrinol Metab 33:265–270. https://doi.org/10.1515/jpem-2019-0329

    Article  CAS  PubMed  Google Scholar 

  13. Xie H, Li C, Wen Y, Ye W, Cai J, Li H, Li X, Li X (2020) Association of diabetes with failure to achieve complete remission of idiopathic membranous nephropathy. Int Urol Nephrol 52(2):337–342. https://doi.org/10.1007/s11255-019-02348-2

    Article  CAS  PubMed  Google Scholar 

  14. Siddiqui K, Joy SS, Al-Rubeaan K (2019) Association of urinary monocyte chemoattractant protein-1 (MCP-1) and kidney injury molecule-1 (KIM-1) with risk factors of diabetic kidney disease in type 2 diabetes patients. Int Urol Nephrol 51(8):1379–1386. https://doi.org/10.1007/s11255-019-02201-6

    Article  CAS  PubMed  Google Scholar 

  15. Yamaguchi Y, Itabashi M, Yumura W, Takei T (2020) Geriatric assessment of estimated glomerular filtration rate: a cross-sectional study. Clin Exp Nephrol 24(3):216–224. https://doi.org/10.1007/s10157-019-01797-4

    Article  CAS  PubMed  Google Scholar 

  16. Zhong Y, Lee K, Deng Y, Ma Y, Chen Y, Li X, Wei C, Yang S, Wang T, Wong NJ, Muwonge AN, Azeloglu EU, Zhang W, Das B, He JC, Liu R (2019) Arctigenin attenuates diabetic kidney disease through the activation of PP2A in podocytes. Nat Commun 10:1–15. https://doi.org/10.1038/s41467-019-12433-w

    Article  CAS  Google Scholar 

  17. Milas O, Gadalean F, Vlad A et al (2019) Pro-inflammatory cytokines are associated with podocyte damage and proximal tubular dysfunction in the early stage of diabetic kidney disease in type 2 diabetes mellitus patients. J Diabetes Complications 34:107–114. https://doi.org/10.1016/j.jdiacomp.2019.107479

    Article  Google Scholar 

  18. Li XQ, Chang DY, Chen M, Zhao MH (2019) Deficiency of C3a receptor attenuates the development of diabetic nephropathy. BMJ Open Diabetes Res Care 7:1–9. https://doi.org/10.1136/bmjdrc-2019-000817

    Article  Google Scholar 

  19. Xiao H, Sun X, Liu R, Chen Z, Lin Z, Yang Y, Zhang M, Liu P, Quan S, Huang H (2019) Gentiopicroside activates the bile acid receptor Gpbar1 (TGR5) to repress NF-kappaB pathway and ameliorate diabetic nephropathy. Pharmacol Res 151:104559. https://doi.org/10.1016/j.phrs.2019.104559

  20. Qiu L, Xu R, Wang S, Li S, Sheng H, Wu J, Qu Y (2015) Honokiol ameliorates endothelial dysfunction through suppression of PTX3 expression, a key mediator of IKK/IkB/NF-kB, in atherosclerotic cell model. Exp Mol Med 47:e171. https://doi.org/10.1038/emm.2015.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jaillon S, Bonavita E, Gentile S, Rubino M, Laface I, Garlanda C, Mantovani A (2014) The long pentraxin PTX3 as a key component of humoral innate immunity and a candidate diagnostic for inflammatory diseases. Int Arch Allergy Immunol 165:165–178. https://doi.org/10.1159/000368778

    Article  CAS  PubMed  Google Scholar 

  22. Bala C, Rusu A, Ciobanu DM, Craciun AE, Roman G (2018) The association study of high-sensitivity C-reactive protein, pentraxin 3, nitrotyrosine, and insulin dose in patients with insulin-treated type 2 diabetes mellitus. Ther Clin Risk Manag 28(14):955–963. https://doi.org/10.2147/TCRM.S162086

    Article  Google Scholar 

  23. Pang Y, Tan Y, Li Y, Zhang J, Guo Y, Guo Z, Zhang C, Yu F, Zhao MH (2016) Pentraxin 3 is closely associated with tubulointerstitial injury in lupus nephritis: a large multicenter cross-sectional study. Medicine (Baltimore) 95:e2520. https://doi.org/10.1097/MD.0000000000002520

    Article  CAS  Google Scholar 

  24. Hung TW, Tsai JP, Lin SH, Lee CH, Hsieh YH, Chang HR (2016) Pentraxin 3 activates JNK signaling and regulates the epithelial-to-mesenchymal transition in renal ribrosis. Cell Physiol Biochem 40:1029–1038. https://doi.org/10.1159/000453159

    Article  CAS  PubMed  Google Scholar 

  25. Takashi Y, Koga M, Matsuzawa Y, Saito J, Omura M, Nishikawa T (2018) Circulating pentraxin 3 is positively associated with chronic hyperglycemia but negatively associated with plasma aldosterone concentration. PLoS ONE 13:1–10. https://doi.org/10.1371/journal.pone.0196526

    Article  CAS  Google Scholar 

  26. Uzun S, Ozari M, Gursu M, Karadag S, Behlul A, Sari S, Koldas M, Demir S, Karaali Z, Ozturk S (2016) Changes in the inflammatory markers with advancing stages of diabetic nephropathy and the role of pentraxin-3. Ren Fai 38:1193–1198. https://doi.org/10.1080/0886022X.2016.1209031

    Article  CAS  Google Scholar 

  27. Chen X, Luo J, Wu M, Pan Z, Xie Y, Wang H, Chen B, Zhu H (2018) Study on association of pentraxin 3 and diabetic nephropathy in a rat model. J Diabetes Res 13(2018):8968573. https://doi.org/10.1155/2018/8968573

    Article  CAS  Google Scholar 

  28. Xiao Y, Yang N, Zhang Q, Wang Y, Yang S, Liu Z (2014) Pentraxin 3 inhibits acute renal injury-induced interstitial fibrosis through suppression of IL-6/Stat3 pathway. Inflammation 37(5):1895–1901. https://doi.org/10.1007/s10753-014-9921-2

    Article  CAS  PubMed  Google Scholar 

  29. Maciorkowska M, Musiałowska D, Małyszko J (2019) Adropin and irisin in arterial hypertension, diabetes mellitus and chronic kidney disease. Adv Clin Exp Med 28:1571–1575. https://doi.org/10.17219/acem/104551

  30. Celik HT, Bilen M, Kazancı F, Yildirim ME, İncebay İB, Erdamar H (2019) Serum adropin as a predictive biomarker of erectile dysfunction in coronary artery disease patients. Cent Euro J Uro 72:302–306. https://doi.org/10.5173/ceju.2019.1666

    Article  CAS  Google Scholar 

  31. Akcilar R, Kocak FE, Simsek H, Akcilar A, Bayat Z, Ece E, Kokdasgil H (2016) Antidiabetic and hypolipidemic effects of adropin in streoptozotocin-induced type 2 diabetic rats. Bratisl Lek Listy 117:100–105. https://doi.org/10.4149/bll_2016_020

    Article  CAS  PubMed  Google Scholar 

  32. Li S, Sun J, Hu W, Liu Y, Lin D, Duan H, Liu F (2019) The association of serum and vitreous adropin concentrations with diabetic retinopathy. Ann Clin Biochem 56:253–258. https://doi.org/10.1177/0004563218820359

    Article  CAS  PubMed  Google Scholar 

  33. Thapa D, Xie B, Zhang M et al (2019) Adropin treatment restores cardiac glucose oxidation in pre-diabetic obese mice. J Mol Cell Cardiol 129:174–178. https://doi.org/10.1016/j.yjmcc.2019.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors appreciate all members of the Department of Endocrinology, Baoding NO.1 Central Hospital and Department of Ophthalmology, for their sincere advice.

Funding

This work was funded by Project of National Natural Science Foundation of China (81500644), Hebei province medical applicable technology tracking project (G2019012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunliang Zhang.

Ethics declarations

Conflicts of interest

The authors have declared that no conflict of interest exists.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee at which the studies were conducted (Ethics Committee of Baoding NO.1 Central Hospital approval number #2017010) and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Tian, X., Guo, S. et al. Pentraxin-3 and adropin as inflammatory markers of early renal damage in type 2 diabetes patients. Int Urol Nephrol 52, 2145–2152 (2020). https://doi.org/10.1007/s11255-020-02568-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-020-02568-x

Keywords

Navigation