Skip to main content

Advertisement

Log in

The impact of dyslipidemia and oxidative stress on vasoactive mediators in patients with renal dysfunction

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Hyperlipidemia and oxidative stress are indispensable features of chronic kidney disease (CKD) that favor the development of atherogenic plaques and cardiovascular disease (CVD). A number of vasoactive mediators including proprotein convertase subtilisin–kexin type 9 (PCSK9), endothelin-1, nitric oxide, and angiotensin II have fundamental roles in the pathophysiology of atherosclerotic events; moreover, their levels are affected by dyslipidemia and oxidative stress due to renal dysfunction. Therefore, therapeutic measures aimed at correcting dyslipidemia and alleviating oxidative stress could potentially protect against CVD in CKD patients. In this review, we discuss the relation between dyslipidemia, oxidative stress, and vasoactive mediators as well as the available treatment options against these disturbances in CKD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Argani H, Ghorbanihaghjo A, Vatankhahan H, Rashtchizadeh N, Raeisi S, Ilghami H (2016) The effect of red grape seed extract on serum paraoxonase activity in patients with mild to moderate hyperlipidemia. Sao Paulo Med J 134(3):234–239

    PubMed  Google Scholar 

  2. Nitta K (2012) Clinical assessment and management of dyslipidemia in patients with chronic kidney disease. Clin Exp Nephrol 16(4):522–529

    CAS  PubMed  Google Scholar 

  3. Kanbay M, Afsar B, Siriopol D, Unal HU, Karaman M, Saglam M, Gezer M, Taş A, Eyileten T, Guler AK (2016) Endostatin in chronic kidney disease: associations with inflammation, vascular abnormalities, cardiovascular events and survival. Eur J Int Med 33:81–87

    CAS  Google Scholar 

  4. Razavi S-M, Gholamin S, Eskandari A, Mohsenian N, Ghorbanihaghjo A, Delazar A, Rashtchizadeh N, Keshtkar-Jahromi M, Argani H (2013) Red grape seed extract improves lipid profiles and decreases oxidized low-density lipoprotein in patients with mild hyperlipidemia. J Med Food 16(3):255–258

    CAS  PubMed  Google Scholar 

  5. Lee HS, Song CY (2009) Oxidized low-density lipoprotein and oxidative stress in the development of glomerulosclerosis. Am J Nephrol 29(1):62–70

    CAS  PubMed  Google Scholar 

  6. Trevisan R, Dodesini AR, Lepore G (2006) Lipids and renal disease. J Am Soc Nephrol 17(4 suppl 2):S145–S147

    CAS  PubMed  Google Scholar 

  7. Rüster C, Wolf G (2006) Renin-angiotensin-aldosterone system and progression of renal disease. J Am Soc Nephrol 17(11):2985–2991

    PubMed  Google Scholar 

  8. Massy ZA, De Zeeuw D (2013) LDL cholesterol in CKD—to treat or not to treat? Kidney Int 84(3):451–456

    PubMed  Google Scholar 

  9. Meenakshi Sundaram SP, Nagarajan S, Manjula Devi AJ (2014) Chronic kidney disease—effect of oxidative stress. Chin J Biol 2014:216210

    Google Scholar 

  10. Vaziri ND (2014) Role of dyslipidemia in impairment of energy metabolism, oxidative stress, inflammation and cardiovascular disease in chronic kidney disease. Clin Exp Nephrol 18(2):265–268

    CAS  PubMed  Google Scholar 

  11. Mohammed CJ, Xie Y, Brewster PS, Ghosh S, Dube P, Sarsour T, Kleinhenz AL, Crawford EL, Malhotra D, James RW (2019) Circulating lactonase activity but not protein level of PON-1 predicts adverse outcomes in subjects with chronic kidney disease. J Clin Med 8(7):1034

    PubMed Central  Google Scholar 

  12. Vaziri ND (2016) HDL abnormalities in nephrotic syndrome and chronic kidney disease. Nat Rev Nephrol 12(1):37

    CAS  PubMed  Google Scholar 

  13. Moradi H, Vaziri ND, Kashyap ML, Said HM, Kalantar-Zadeh K (2013) Role of HDL dysfunction in end-stage renal disease: a double-edged sword. J Ren Nutr 23(3):203–206

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kwan BC, Kronenberg F, Beddhu S, Cheung AK (2007) Lipoprotein metabolism and lipid management in chronic kidney disease. J Am Soc Nephrol 18(4):1246–1261

    CAS  PubMed  Google Scholar 

  15. Kalantar-Zadeh K, Block G, Humphreys MH, Kopple JD (2003) Reverse epidemiology of cardiovascular risk factors in maintenance dialysis patients. Kidney Int 63(3):793–808

    PubMed  Google Scholar 

  16. Chen H, Chen L, Liu D, Chen D-Q, Vaziri ND, Yu X-Y, Zhang L, Su W, Bai X, Zhao Y-Y (2017) Combined clinical phenotype and lipidomic analysis reveals the impact of chronic kidney disease on lipid metabolism. J Proteome Res 16(4):1566–1578

    CAS  PubMed  Google Scholar 

  17. Reis A, Rudnitskaya A, Chariyavilaskul P, Dhaun N, Melville V, Goddard J, Webb DJ, Pitt AR, Spickett CM (2015) Top-down lipidomics of low density lipoprotein reveal altered lipid profiles in advanced chronic kidney disease. J Lipid Res 56(2):413–422

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Vaziri ND (2016) Disorders of lipid metabolism in nephrotic syndrome: mechanisms and consequences. Kidney Int 90(1):41–52

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Csonka C, Sárközy M, Pipicz M, Dux L, Csont T (2016) Modulation of hypercholesterolemia-induced oxidative/nitrative stress in the heart. Oxid Med Cell Longev 2016:3863726

    PubMed  Google Scholar 

  20. Vona R, Gambardella L, Cittadini C, Straface E, Pietraforte D (2019) Biomarkers of oxidative stress in metabolic syndrome and associated diseases. Oxid Med Cell Longev 2019:8267234

    PubMed  PubMed Central  Google Scholar 

  21. Kachhawa K, Agrawal D, Rath B, Kumar S (2017) Association of lipid abnormalities and oxidative stress with diabetic nephropathy. J Integr Nephrol Androl 4(1):3

    Google Scholar 

  22. Yu S, Zhou X, Hou B, Tang B, Li J, Zhang B (2016) Protective effect of rosuvastatin treatment by regulating oxidized low-density lipoprotein expression in a rat model of liver fibrosis. Biomed Rep 5(3):311–316

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kose E, An T, Kikkawa A, Matsumoto Y, Hayashi H (2014) Effects on serum uric acid by difference of the renal protective effects with atorvastatin and rosuvastatin in chronic kidney disease patients. Biol Pharm Bull 37(2):226–231

    CAS  PubMed  Google Scholar 

  24. Baylis C (2006) Arginine, arginine analogs and nitric oxide production in chronic kidney disease. Nat Rev Nephrol 2(4):209

    CAS  Google Scholar 

  25. Dorighello GG, Paim BA, Kiihl SF, Ferreira MS, Catharino RR, Vercesi AE, Oliveira HC (2016) Correlation between mitochondrial reactive oxygen and severity of atherosclerosis. Oxid Med Cell Longev 2016:7843685

    PubMed  Google Scholar 

  26. Duni A, Liakopoulos V, Rapsomanikis K-P, Dounousi E (2017) Chronic kidney disease and disproportionally increased cardiovascular damage: does oxidative stress explain the burden? Oxid Med Cell Longev 2017:9036450

    PubMed  PubMed Central  Google Scholar 

  27. Reddy Y, Kiranmayi V, Bitla A, Krishna G, Rao PS, Sivakumar V (2015) Nitric oxide status in patients with chronic kidney disease. Indian J Nephrol 25(5):287

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Girardi JM, Farias RE, Ferreira AP, Raposo NRB (2011) Rosuvastatin prevents proteinuria and renal inflammation in nitric oxide-deficient rats. Clinics 66(8):1457–1462

    PubMed  PubMed Central  Google Scholar 

  29. Rysz J, Gluba-Brzózka A, Franczyk B, Jabłonowski Z, Ciałkowska-Rysz A (2017) Novel biomarkers in the diagnosis of chronic kidney disease and the prediction of its outcome. Int J Mol Sci 18(8):1702

    PubMed Central  Google Scholar 

  30. Cvetković T, Pavlović R, Đorđević V, Stojanović I, Veličković-Radovanović R, Ignjatović A, Stefanović N, Živanović S, Đorđević V (2012) Dimethylarginine–biomarkers in progression of kidney disease/Dimetilarginini–biomarkeri u progresiji bubrežnih oboljenja. J Med Biochem 31(4):301–308

    Google Scholar 

  31. Ignjatović A, Cvetković T, Pavlović R, Đorđević V, Milošević Z, Đorđević V, Pavlović D, Stojanović I, Živanović S (2013) ADMA and C-reactive protein as mortality predictors in dialysis patients. Open Med 8(3):346–353

    Google Scholar 

  32. Schmidt RJ, Baylis C (2000) Total nitric oxide production is low in patients with chronic renal disease. Kidney Int 58(3):1261–1266

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kielstein JT, Böger RH, Bode-Böger SM, Frölich JC, Haller H, Ritz E, Fliser D (2002) Marked increase of asymmetric dimethylarginine in patients with incipient primary chronic renal disease. J Am Soc Nephrol 13(1):170–176

    CAS  PubMed  Google Scholar 

  34. Zoccali C, Bode-Böger SM, Mallamaci F, Benedetto FA, Tripepi G, Malatino LS, Cataliotti A, Bellanuova I, Fermo I, Frölich JC (2001) Plasma concentration of asymmetrical dimethylarginine and mortality in patients with end-stage renal disease: a prospective study. Lancet 358(9299):2113–2117

    CAS  PubMed  Google Scholar 

  35. Andreadou I, Iliodromitis EK, Lazou A, Görbe A, Giricz Z, Schulz R, Ferdinandy P (2017) Effect of hypercholesterolaemia on myocardial function, ischaemia–reperfusion injury and cardioprotection by preconditioning, postconditioning and remote conditioning. Br J Pharmacol 174(12):1555–1569

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pizoń T, Rajzer M, Wojciechowska W, Wach-Pizoń M, Drożdż T, Wróbel K, Gruszka K, Rojek M, Kameczura T, Jurczyszyn A, Kąkol J, Czarnecka D (2018) The relationship between plasma renin activity and serum lipid profiles in patients with primary arterial hypertension. J Renin Angiotensin Aldosterone Syst. https://doi.org/10.1177/1470320318810022

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nogueira A, Pires MJ, Oliveira PA (2017) Pathophysiological mechanisms of renal fibrosis: a review of animal models and therapeutic strategies. In Vivo 31(1):1–22

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bianchi S, Bigazzi R, Caiazza A, Campese VM (2003) A controlled, prospective study of the effects of atorvastatin on proteinuria and progression of kidney disease. Am J Kidney Dis 41(3):565–570

    CAS  PubMed  Google Scholar 

  39. Ougaard M, Jensen H, Thuen I, Petersen E, Kvist P (2018) Inhibitors of the renin-angiotensin system ameliorates clinical and pathological aspects of experimentally induced nephrotoxic serum nephritis. Ren Fail 40(1):640–648

    CAS  PubMed  PubMed Central  Google Scholar 

  40. De Miguel C, Speed JS, Kasztan M, Gohar EY, Pollock DM (2016) Endothelin-1 and the kidney: new perspectives and recent findings. Curr Opin Nephrol Hypertens 25(1):35

    PubMed  PubMed Central  Google Scholar 

  41. Czopek A, Moorhouse R, Webb DJ, Dhaun N (2015) Therapeutic potential of endothelin receptor antagonism in kidney disease. Am J Physiol Regul Integr Comp Physiol 310(5):R388–R397

    PubMed  Google Scholar 

  42. Al-Dujaili ANG, Al-Shemeri MK (2016) Effect of silver nanoparticles and rosuvastatin on endothelin and obestatin in rats induced by high fat-diet. Res J Pharm Biol Chem Sci 7(3):1022–1030

    CAS  Google Scholar 

  43. Sudano I, Spieker LE, Hermann F, Flammer A, Corti R, Noll G, Lüscher TF (2006) Protection of endothelial function: targets for nutritional and pharmacological interventions. J Cardiovasc Pharmacol 47:S136–S150

    CAS  PubMed  Google Scholar 

  44. Larivière R, Lebel M (2003) Endothelin-1 in chronic renal failure and hypertension. Can J Physiol Pharmacol 81(6):607–621

    PubMed  Google Scholar 

  45. Vaneckova I, Hojna S, Kadlecova M, Vernerova Z, Kopkan L, Cervenka L, Zicha J (2018) Renoprotective effects of ETA receptor antagonists therapy in experimental non-diabetic chronic kidney disease: is there still hope for the future? Physiol Res 67:S55–S67

    CAS  PubMed  Google Scholar 

  46. Kohan DE, Barton M (2014) Endothelin and endothelin antagonists in chronic kidney disease. Kidney Int 86(5):896–904

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Schneider MP, Mann JF (2014) Endothelin antagonism for patients with chronic kidney disease: still a hope for the future. Nephrol Dial Transplant 29(suppl_1):i69–i73

    PubMed  Google Scholar 

  48. Moslehi A, Hamidi-zad Z (2018) Role of SREBPs in liver diseases: a mini-review. J Clin Transl Hepatol 6(3):332

    PubMed  PubMed Central  Google Scholar 

  49. DeBose-Boyd RA, Ye J (2018) SREBPs in lipid metabolism, insulin signaling, and beyond. Trends Biochem Sci 43(5):358–368

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sun L, Halaihel N, Zhang W, Rogers T, Levi M (2002) Role of sterol regulatory element-binding protein 1 in regulation of renal lipid metabolism and glomerulosclerosis in diabetes mellitus. J Biol Chem 277(21):18919–18927

    CAS  PubMed  Google Scholar 

  51. Wang TN, Chen X, Li R, Gao B, Mohammed-Ali Z, Lu C, Yum V, Dickhout JG, Krepinsky JC (2015) SREBP-1 mediates angiotensin II-induced TGF-β1 upregulation and glomerular fibrosis. J Am Soc Nephrol 26(8):1839–1854

    CAS  PubMed  Google Scholar 

  52. Mustafa M, Wang TN, Chen X, Gao B, Krepinsky JC (2016) SREBP inhibition ameliorates renal injury after unilateral ureteral obstruction. Am J Physiol Ren Physiol 311(3):F614–F625

    CAS  Google Scholar 

  53. Bandyopadhyay D, Ashish K, Hajra A, Qureshi A, Ghosh RK (2018) Cardiovascular outcomes of PCSK9 inhibitors: with special emphasis on its effect beyond LDL-cholesterol lowering. J Lipids 2018:3179201

    PubMed  PubMed Central  Google Scholar 

  54. Canuel M, Sun X, Asselin M-C, Paramithiotis E, Prat A, Seidah NG (2013) Proprotein convertase subtilisin/kexin type 9 (PCSK9) can mediate degradation of the low density lipoprotein receptor-related protein 1 (LRP-1). PLoS One 8(5):e64145

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kwakernaak AJ, Lambert G, Slagman MC, Waanders F, Laverman GD, Petrides F, Dikkeschei BD, Navis G, Dullaart RP (2013) Proprotein convertase subtilisin–kexin type 9 is elevated in proteinuric subjects: relationship with lipoprotein response to antiproteinuric treatment. Atherosclerosis 226(2):459–465

    CAS  PubMed  Google Scholar 

  56. Haas ME, Levenson AE, Sun X, Liao W-H, Rutkowski JM, Network NSS, de Ferranti SD, Schumacher VA, Scherer PE, Salant DJ (2016) The role of proprotein convertase subtilisin/kexin type 9 in nephrotic syndrome-associated hypercholesterolemia. Circulation 134(1):61–72

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Rogacev KS, Heine GH, Silbernagel G, Kleber ME, Seiler S, Emrich I, Lennartz S, Werner C, Zawada AM, Fliser D (2016) PCSK9 plasma concentrations are independent of GFR and do not predict cardiovascular events in patients with decreased GFR. PLoS One 11(1):e0146920

    PubMed  PubMed Central  Google Scholar 

  58. Shrestha P, van de Sluis B, Dullaart RP, van den Born J (2019) Novel aspects of PCSK9 and lipoprotein receptors in renal disease-related dyslipidemia. Cell Signal 55:53–64

    CAS  PubMed  Google Scholar 

  59. Toth PP, Dwyer JP, Cannon CP, Colhoun HM, Rader DJ, Upadhyay A, Louie MJ, Koren A, Letierce A, Mandel J (2018) Efficacy and safety of lipid lowering by alirocumab in chronic kidney disease. Kidney Int 93(6):1397–1408

    CAS  PubMed  Google Scholar 

  60. Zheng-Lin B, Ortiz A (2018) Lipid management in chronic kidney disease: systematic review of PCSK9 targeting. Drugs 78(2):215–229

    PubMed  Google Scholar 

  61. Reiner Ž, Catapano AL, De Backer G, Graham I, Taskinen M-R, Wiklund O, Agewall S, Alegria E, Chapman MJ, Durrington P (2011) ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur Heart J 32(14):1769–1818

    PubMed  Google Scholar 

  62. Sironi L, Gianazza E, Gelosa P, Guerrini U, Nobili E, Gianella A, Cremonesi B, Paoletti R, Tremoli E (2005) Rosuvastatin, but not simvastatin, provides end-organ protection in stroke-prone rats by antiinflammatory effects. Arterioscler Thromb Vasc Biol 25(3):598–603

    CAS  PubMed  Google Scholar 

  63. Shen H, Chen X, Lu J, Yang H, Xu Y, Zhu A, Zhang X, Ye F, Gu Y (2018) Effects of statin therapy on chronic kidney disease patients with coronary artery disease. Lipids Health Dis 17(1):84

    PubMed  PubMed Central  Google Scholar 

  64. Tonelli M, Moyé L, Sacks FM, Cole T, Curhan GC (2003) Effect of pravastatin on loss of renal function in people with moderate chronic renal insufficiency and cardiovascular disease. J Am Soc Nephrol 14(6):1605–1613

    CAS  PubMed  Google Scholar 

  65. Wu Y, Wang Y, An C, Dong Z, Liu H, Zhang Y, Zhang M, An F (2012) Effects of rosuvastatin and atorvastatin on renal function. Circ J 76(5):1259–1266

    CAS  PubMed  Google Scholar 

  66. Baigent C (2005) Cholesterol Treatment Trialists’ (CTT) Collaborators: efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366:1267–1278

    CAS  PubMed  Google Scholar 

  67. Mikolasevic I, Žutelija M, Mavrinac V, Orlic L (2017) Dyslipidemia in patients with chronic kidney disease: etiology and management. Int J Nephrol Renovasc Dis 10:35–45

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Agrawal S, Zaritsky JJ, Fornoni A, Smoyer WE (2018) Dyslipidaemia in nephrotic syndrome: mechanisms and treatment. Nat Rev Nephrol 14(1):57

    CAS  PubMed  Google Scholar 

  69. Park CW (2013) Niacin in patients with chronic kidney disease: is it effective and safe? Kidney Res Clin Pract 32(1):1

    PubMed  PubMed Central  Google Scholar 

  70. Omran J, Al-Dadah A, Dellsperger KC (2013) Dyslipidemia in patients with chronic and end-stage kidney disease. Cardiorenal Med 3(3):165–177

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Shattat GF (2015) A review article on hyperlipidemia: types, treatments and new drug targets. Biomed Pharmacol J 7(1):399–409

    Google Scholar 

  72. Boaz M, Smetana S, Weinstein T, Matas Z, Gafter U, Iaina A, Knecht A, Weissgarten Y, Brunner D, Fainaru M (2000) Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): randomised placebo-controlled trial. Lancet 356(9237):1213–1218

    CAS  PubMed  Google Scholar 

  73. Islam KN, O’Byrne D, Devaraj S, Palmer B, Grundy SM, Jialal I (2000) Alpha-tocopherol supplementation decreases the oxidative susceptibility of LDL in renal failure patients on dialysis therapy. Atherosclerosis 150(1):217–224

    CAS  PubMed  Google Scholar 

  74. Obialo C, Ofili E, Norris K (2018) Statins and cardiovascular disease outcomes in chronic kidney disease: reaffirmation vs. repudiation. Int J Environ Res Public Health 15(12):2733

    CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Biotechnology Research Center, Tabriz University of Medical Sciences (Grant number: 95.5-9.16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadereh Rashtchizadeh.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabarpour, M., Rashtchizadeh, N., Argani, H. et al. The impact of dyslipidemia and oxidative stress on vasoactive mediators in patients with renal dysfunction. Int Urol Nephrol 51, 2235–2242 (2019). https://doi.org/10.1007/s11255-019-02319-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-019-02319-7

Keywords

Navigation