Skip to main content
Log in

Use of mammalian target of rapamycin inhibitors in patient with autosomal dominant polycystic kidney disease: an updated meta-analysis

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

Mammalian target of rapamycin (mTOR) inhibitors were previously considered a potential therapy for autosomal dominant polycystic kidney disease (ADPKD), but prior studies remained controversial about their efficacy. We performed an updated meta-analysis regarding the therapeutic and adverse effects of mTOR inhibitors in patients with ADPKD.

Methods

We systematically searched Cochrane Library, PubMed, EMBASE, and Medline for randomized controlled trials (RCTs) comparing mTOR inhibitors to placebo in ADPKD patients up to August 2019. We calculated weighted mean differences (WMDs) for total kidney volume (TKV), estimated glomerular filtration rates (eGFRs), and weighted odds ratios (ORs) for treatment-related complications between the treatment and the placebo groups, using the random effects model.

Results

We retrieved a total of 9 RCTs enrolling 784 ADPKD patients receiving rapamycin, sirolimus, or everolimus between 2009 and 2016. The WMDs of TKV and eGFR from baseline to the last measurement were − 31.54 mL (95% confidence interval [CI] − 76.79 to 13.71 mL) and 2.81 mL/min/1.73 m2 (95% CI − 1.85 to 7.46 mL/min/1.73 m2), respectively. Patients receiving mTOR inhibitors had a significantly increased risk of any adverse effects (OR 5.92, 95% CI 3.53–9.94), with the most common ones being aphthous stomatitis (OR 15.45, 95% CI 9.68–24.66) and peripheral edema (OR 3.49, 95% CI 1.31–9.27) compared to placebo users.

Conclusions

mTOR inhibitors did not significantly influence renal progression in patients with ADPKD, but were associated with a higher risk of complications. Whether mTOR inhibitors can be an add-on option or second-line agents remain undetermined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request.

References

  1. Davies F, Coles GA, Harper PS, Williams AJ, Evans C, Cochlin D (1991) Polycystic kidney disease re-evaluated: a population-based study. Q J Med 79:477–485

    CAS  PubMed  Google Scholar 

  2. Porath B, Gainullin VG, Cornec-Le Gall E, Dillinger EK, Heyer CM, Hopp K, Edwards ME, Madsen CD, Mauritz SR, Banks CJ, Baheti S et al (2016) Mutations in GANAB, encoding the glucosidase Iialpha subunit, cause autosomal-dominant polycystic kidney and liver disease. Am J Hum Genet 98:1193–1207

    Article  CAS  Google Scholar 

  3. Lanktree MB, Chapman AB (2017) New treatment paradigms for ADPKD: moving towards precision medicine. Nat Rev Nephrol 13:750–768

    Article  CAS  Google Scholar 

  4. Kanaan N, Devuyst O, Pirson Y (2014) Renal transplantation in autosomal dominant polycystic kidney disease. Nat Rev Nephrol 10:455–465

    Article  CAS  Google Scholar 

  5. Jankowska M, Kuzmiuk-Glembin I, Skonieczny P, Debska-Slizien A (2018) Native nephrectomy in renal transplant recipients with autosomal dominant polycystic kidney disease. Transplant Proc 50:1863–1867

    Article  CAS  Google Scholar 

  6. Gabow PA (1993) Autosomal dominant polycystic kidney disease. N Engl J Med 329:332–342

    Article  CAS  Google Scholar 

  7. Ong AC, Devuyst O, Knebelmann B, Walz G (2015) Autosomal dominant polycystic kidney disease: the changing face of clinical management. Lancet 385:1993–2002

    Article  Google Scholar 

  8. Novalic Z, van der Wal AM, Leonhard WN, Koehl G, Breuning MH, Geissler EK, de Heer E, Peters DJ (2012) Dose-dependent effects of sirolimus on mTOR signaling and polycystic kidney disease. J Am Soc Nephrol 23:842–853

    Article  CAS  Google Scholar 

  9. Wu M, Wahl PR, Le Hir M, Wackerle-Men Y, Wuthrich RP, Serra AL (2007) Everolimus retards cyst growth and preserves kidney function in a rodent model for polycystic kidney disease. Kidney Blood Press Res 30:253–259

    Article  Google Scholar 

  10. Chapman AB, Bost JE, Torres VE, Guay-Woodford L, Bae KT, Landsittel D, Li J, King BF, Martin D, Wetzel LH, Lockhart ME, Harris PC, Moxey-Mims M, Flessner M, Bennett WM, Grantham JJ (2012) Kidney volume and functional outcomes in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 7:479–486

    Article  CAS  Google Scholar 

  11. Myint TM, Rangan GK, Webster AC (2014) Treatments to slow progression of autosomal dominant polycystic kidney disease: systematic review and meta-analysis of randomized trials. Nephrology 19:217–226

    Article  Google Scholar 

  12. Xue C, Dai B, Mei C (2013) Long-term treatment with mammalian target of rapamycin inhibitor does not benefit patients with autosomal dominant polycystic kidney disease: a meta-analysis. Nephron Clin Pract 124:10–16

    Article  CAS  Google Scholar 

  13. Braun WE, Schold JD, Stephany BR, Spirko RA, Herts BR (2014) Low-dose rapamycin (sirolimus) effects in autosomal dominant polycystic kidney disease: an open-label randomized controlled pilot study. Clin J Am Soc Nephrol 9:881–888

    Article  Google Scholar 

  14. Chrispijn M, Gevers TJ, Hol JC, Monshouwer R, Dekker HM, Drenth JP (2013) Everolimus does not further reduce polycystic liver volume when added to long acting octreotide: results from a randomized controlled trial. J Hepatol 59:153–159

    Article  CAS  Google Scholar 

  15. Ruggenenti P, Gentile G, Perico N, Perna A, Barcella L, Trillini M, Cortinovis M, Ferrer Siles CP, Reyes Loaeza JA, Aparicio MC, Fasolini G, Gaspari F, Martinetti D, Carrara F, Rubis N, Prandini S, Caroli A, Sharma K, Antiga L, Remuzzi A, Remuzzi G (2016) Effect of sirolimus on disease progression in patients with autosomal dominant polycystic kidney disease and CKD stages 3b-4. Clin J Am Soc Nephrol 11:785–794

    Article  CAS  Google Scholar 

  16. Perico N, Antiga L, Caroli A, Ruggenenti P, Fasolini G, Cafaro M, Ondei P, Rubis N, Diadei O, Gherardi G, Prandini S, Panozo A, Bravo RF, Carminati S, De Leon FR, Gaspari F, Cortinovis M, Motterlini N, Enelordache B, Remuzzi A, Remuzzi G (2010) Sirolimus therapy to halt the progression of ADPKD. J Am Soc Nephrol 21:1031–1040

    Article  CAS  Google Scholar 

  17. Serra AL, Poster D, Kistler AD, Krauer F, Raina S, Young J, Rentsch KM, Spanaus KS, Senn O, Kristanto P, Scheffel H, Weishaupt D, Wuthrich RP (2010) Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N Engl J Med 363:820–829

    Article  CAS  Google Scholar 

  18. Soliman A, Zamil S, Lofty A, Ismail E (2012) Sirolimus produced S-shaped effect on adult polycystic kidneys after 2-year treatment. Transplant Proc 44:2936–2939

    Article  CAS  Google Scholar 

  19. Stallone G, Infante B, Grandaliano G, Bristogiannis C, Macarini L, Mezzopane D, Bruno F, Montemurno E, Schirinzi A, Sabbatini M, Pisani A, Tataranni T, Schena FP, Gesualdo L (2012) Rapamycin for treatment of type I autosomal dominant polycystic kidney disease (RAPYD-study): a randomized, controlled study. Nephrol Dial Transplant 27:3560–3567

    Article  CAS  Google Scholar 

  20. Walz G, Budde K, Mannaa M, Nurnberger J, Wanner C, Sommerer C, Kunzendorf U, Banas B, Horl WH, Obermuller N, Arns W, Pavenstadt H, Gaedeke J, Buchert M, May C, Gschaidmeier H, Kramer S, Eckardt KU (2010) Everolimus in patients with autosomal dominant polycystic kidney disease. N Engl J Med 363:830–840

    Article  CAS  Google Scholar 

  21. Serra AL, Kistler AD, Poster D, Krauer F, Senn O, Raina S, Pavik I, Rentsch K, Regeniter A, Weishaupt D, Wuthrich RP (2009) Safety and tolerability of sirolimus treatment in patients with autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 24:3334–3342

    Article  CAS  Google Scholar 

  22. Nguyen LS, Vautier M, Allenbach Y, Zahr N, Benveniste O, Funck-Brentano C, Salem J-E (2019) Sirolimus and mTOR inhibitors: a review of side effects and specific management in solid organ transplantation. Drug Saf 42:813–825

    Article  CAS  Google Scholar 

  23. Bolignano D, Palmer SC, Ruospo M, Zoccali C, Craig JC, Strippoli GF (2015) Interventions for preventing the progression of autosomal dominant polycystic kidney disease. Cochrane Database Syst Rev 7:CD010294

    Google Scholar 

  24. de Stephanis L, Bonon A, Varani K, Lanza G, Gafa R, Pinton P, Pema M, Somlo S, Boletta A, Aguiari G (2017) Double inhibition of cAMP and mTOR signalling may potentiate the reduction of cell growth in ADPKD cells. Clin Exp Nephrol 21:203–211

    Article  Google Scholar 

  25. Harris PC, Torres VE (2014) Genetic mechanisms and signaling pathways in autosomal dominant polycystic kidney disease. J Clin Invest 124:2315–2324

    Article  CAS  Google Scholar 

  26. Willey CJ, Blais JD, Hall AK, Krasa HB, Makin AJ, Czerwiec FS (2017) Prevalence of autosomal dominant polycystic kidney disease in the European Union. Nephrol Dial Transplant 32:1356–1363

    PubMed  Google Scholar 

  27. Fedeles SV, Gallagher AR, Somlo S (2014) Polycystin-1: a master regulator of intersecting cystic pathways. Trend Mol Med 20:251–260

    Article  CAS  Google Scholar 

  28. Watnick TJ, Germino GG (2013) Polycystic kidney disease: polycystin-1 and polycystin-2—it’s complicated. Nat Rev Nephrol 9:249–250

    Article  CAS  Google Scholar 

  29. Ong AC, Harris PC (2015) A polycystin-centric view of cyst formation and disease: the polycystins revisited. Kidney Int 88:699–710

    Article  CAS  Google Scholar 

  30. Torres VE, Boletta A, Chapman A, Gattone V, Pei Y, Qian Q, Wallace DP, Weimbs T, Wuthrich RP (2010) Prospects for mTOR inhibitor use in patients with polycystic kidney disease and hamartomatous diseases. Clin J Am Soc Nephrol 5:1312–1329

    Article  CAS  Google Scholar 

  31. Zhang H, Bajraszewski N, Wu E, Wang H, Moseman AP, Dabora SL, Griffin JD, Kwiatkowski DJ (2007) PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. J Clin Invest 117:730–738

    Article  CAS  Google Scholar 

  32. Li A, Fan S, Xu Y, Meng J, Shen X, Mao J, Zhang L, Zhang X, Moeckel G, Wu D, Wu G, Liang C (2017) Rapamycin treatment dose-dependently improves the cystic kidney in a new ADPKD mouse model via the mTORC1 and cell-cycle-associated CDK1/cyclin axis. J Cell Mol Med 21:1619–1635

    Article  CAS  Google Scholar 

  33. Qian Q, Du H, King BF, Kumar S, Dean PG, Cosio FG, Torres VE (2008) Sirolimus reduces polycystic liver volume in ADPKD patients. J Am Soc Nephrol 19:631–638

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially sponsored by Taipei Medical University Shuang-Ho Hospital. The sponsors have no role in the study design, data collection, analysis, and result interpretation of this study.

Author information

Authors and Affiliations

Authors

Contributions

Study design: CHL, MYW, WCL; data analysis: CHL, WCL, TCL; article drafting: CHL, MYW, WCL, TCL, CTC; all authors approved the final version of the manuscript.

Corresponding author

Correspondence to Chia-Ter Chao.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial competing interests to declare in relation to this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11697 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CH., Chao, CT., Wu, MY. et al. Use of mammalian target of rapamycin inhibitors in patient with autosomal dominant polycystic kidney disease: an updated meta-analysis. Int Urol Nephrol 51, 2015–2025 (2019). https://doi.org/10.1007/s11255-019-02292-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-019-02292-1

Keywords

Navigation