Skip to main content

Advertisement

Log in

Regenerative potential of platelets in patients with chronic kidney disease

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Introduction

Chronic kidney disease (CKD) is a systemic disease affecting many organs. Progression of renal failure aggravates ongoing inflammation and increases oxidative stress. In the final stage of CKD, it is necessary to use renal replacement therapy. A side effect of dialysis therapy is the synthesis of proinflammatory factors and increased oxidative stress, which activates platelets and immune cells.

Aim of the study

To determine the regenerative potential of platelets in patients with CKD based on the analysis of the relationships between substances with potential regenerative action, as well as analysis of the influence of the type of renal replacement therapy used on regeneration of platelets.

Materials and methods

The study group consisted of 117 patients. Based on the type of therapy used, patients were divided into four groups: hemodialysis, peritoneal dialysis, kidney transplant patients, and conservative treatment (30, 30, 27, and 30 patients). The control group consisted of 30 healthy volunteers. The concentrations of IGF-1, TGF-β, and PDGF-B in the blood serum were measured by ELISA methods.

Results

It was shown that renal replacement therapy significantly influences the concentration of platelet growth factors (IGF-1: p = 0.025 and PDGF-B: p = 0.012). There was a relationship between the type of renal replacement therapy and the duration of dialysis, and the concentration of IGF-1, PDGF-B (p < 0.00001, p < 0.001).

Conclusions

The type of renal replacement therapy has a different effect on the concentration of platelet-derived growth factors IGF-1 and PDGF-B. PD patients had the highest concentrations of all growth factors, and this may be due to the presence of inflammation induced by dialysis-related advanced end-products of glycosylation (AGE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sánchez-González DL, Méndez-Bolaina E, Trejo-Bahena NI (2012) Platelet-rich plasma peptides: key for regeneration. Int J Pept 2012:532519

    Article  Google Scholar 

  2. Rendu F, Brohard-Bohn B (2001) The platelet release reaction: granules’ constituents, secretion and functions. Platelets 12:261–273

    Article  CAS  Google Scholar 

  3. Cole B, Seroyer S (2010) Platelet-rich plasma: where are we now and where are we going? Sports Health 2:203–210

    Article  Google Scholar 

  4. Liu Y, Kalen A, Risto O, Wahlström O (2002) Fibroblast proliferation due to exposure to a platelet concentrate in vitro is pH dependent. Wound Repair Regener 10:336–340

    Article  Google Scholar 

  5. Hosgood G (1993) Wound healing: the role of platelet-derived growth factor and transforming growth factor beta. Vet Surg 22:490–495

    Article  CAS  Google Scholar 

  6. Antoniades HN, Williams LT (1983) Human platelet-derived growth factor: structure and function. Feder Proc 42:2630–2634

    CAS  Google Scholar 

  7. Ece A, Gürkan F, Kervancioglu M, Kocamaz H, Gunes A et al (2006) Oxidative stress, inflammation and early cardiovascular damage in children with chronic renal failure. Pediatr Nephrol 21:545–552

    Article  Google Scholar 

  8. Floege J, Eitner F, Alpers CE (2008) A new look at platelet-derived growth factor in renal disease. J Am Soc Nephrol 19:12–23

    Article  CAS  Google Scholar 

  9. Wahlström O, Linder C, Kalén A, Magnusson P (2008) Acidic preparations of platelet concentrates release bone morphogenetic protein-2. Acta Orthop 79:433–437

    Article  Google Scholar 

  10. Betsholtz C (1995) Role of platelet-derived growth factors in mouse development. Int J Dev Biol 39:817–825

    CAS  PubMed  Google Scholar 

  11. Bir SC, Esaki J, Marui A (2011) Therapeutic treatment with sustained-release platelet-rich plasma restores blood perfusion by augmenting ischemia-induced angiogenesis and arteriogenesis in diabetic mice. J Vasc Res 48:195–205

    Article  Google Scholar 

  12. Pierce GF, Mustoe TA, Lingelbach J, Masakowski VR, Gramates P et al (1989) Transforming growth factor β reverses the glucocorticoid-induced wound healing deficit in rats. Possible regulation in macrophages by platelet-derived growth factor. Proc Natl Acad Sci USA 86:2229–2233

    Article  CAS  Google Scholar 

  13. Böttinger EP, Bitzer M (2002) TGF-beta signaling in renal disease. J Am Soc Nephrol 13:2600–2610

    Article  Google Scholar 

  14. Border WA, Okuda S, Languino LR, Sporn MB, Ruoslahti E (1990) Suppression of experimental glomerulonephritis by antiserum against transforming growth factor beta 1. Nature 346:371–374

    Article  CAS  Google Scholar 

  15. Border WA, Okuda S, Nakamura T, Languino LR, Ruoslahti E (1991) Role of TGF-beta 1 in experimental glomerulonephritis. Ciba Found Symp 157:178–189

    CAS  PubMed  Google Scholar 

  16. Sharma K, Ziyadeh FN, Alzahabi B, McGowan TA, Kapoor S et al (1997) Increased renal production of transforming growth factor-b1 in patients with type II diabetes mellitus. Diabetes 46:854–859

    Article  CAS  Google Scholar 

  17. Ziyadeh FN (1994) Role of transforming growth factor beta in diabetic nephropathy. Exp Nephrol 2:137

    CAS  PubMed  Google Scholar 

  18. Roberts AB (1998) Molecular and cell biology of TGF-beta. Miner Electrolyte Metab 24:111–119

    Article  CAS  Google Scholar 

  19. Filus A, Zdrojewicz Z (2014) Insulinopodobny czynnik wzrostu-1 (IGF-1)—budowai rola w organizmie człowieka. Pediatr Endocrinol Diabetes Metab 22(4):161–169

    Article  Google Scholar 

  20. Kratzsch J, Blum WF, Schenker E et al (1995) Regulation of growth hormone (GH), insulin-like growth factor IGF-1, IGF binding proteins 1,-2,-3 and GH binding protein during progression of liver cirrhosis. Exp Clin Endocrinol Diabetes 103:285–291

    Article  CAS  Google Scholar 

  21. Iglesias P, Diez JJ, Fernandez-Reyes MJ et al (2004) Growth hormone, IGF-1 and its binding proteins (IGFBP-1, and-3) in adult uraemic patients undergoing peritoneal dialysis and haemodialysis. Clin Endocrinol (Orf) 60:741–749

    Article  CAS  Google Scholar 

  22. Jia T, Gama Axelsson T, Heimbürger O, Bárány P, Lindholm B et al (2014) IGF-1 and survival in ESRD. Clin J Am Soc Nephrol 9:120–127

    Article  CAS  Google Scholar 

  23. Vasan RS, Sullivan LM, D’Agostino RB, Roubenoff R, Harris T et al (2003) Serum insulin-like growth factor I and risk for heart failure in elderly individuals without a previous myocardial infarction: the Framingham Heart Study. Ann Intern Med 139:642–648

    Article  CAS  Google Scholar 

  24. Bach LA, Hale LJ (2015) Insulin-like growth factors and kidney disease. Am J Kidney Dis 65:327–336

    Article  CAS  Google Scholar 

  25. Nicolini D, Mocchegiani F, Palmonella G, Coletta M, Brugia M et al (2015) Postoperative insulin-like growth factor 1 levels reflect the graft’s function and predict survival after liver transplantation. PLoS One 17:10

    Google Scholar 

  26. Salso A, Tisone G, Tariciotti L, Lenci I, Manzia TM et al (2014) Relationship between GH/IGF-1 axis, graft recovery, and early survival in patients undergoing liver transplantation. BioMed Res Int 2014:6

    Article  Google Scholar 

  27. Reinhard M, Frystyk J, Jespersen B, Randers E, Bjerre M et al (2014) Impaired postprandial response of the insulin-like growth factor system in maintenance haemodialysis. Clin Endocrinol (Oxf) 80:757–765

    Article  CAS  Google Scholar 

  28. Youngman O (2012) The insulin-like growth factor system in chronic kidney disease: pathophysiology and therapeutic opportunities. Kidney Res Clin Pract 31:26–37

    Article  Google Scholar 

  29. Franklin SC, Moulton M, Sicard GA, Hammerman MR, Miller B (1997) Insulin-like growth factor I preserves renal function postoperatively. Am J Physiol 272:F257–F259

    CAS  PubMed  Google Scholar 

  30. Vijayan A, Franklin SC, Behrend T, Hammerman MR, Miller B (1999) Insulin-like growth factor I improves renal function in patients with end-stage chronic renal failure. Am J Physiol 276:R929–R934

    CAS  PubMed  Google Scholar 

  31. Hammerman MR, Miller SB (1997) Effects of growth hormone and insulin-like growth factor I on renal growth and function. J Pediatr 131:S17–S19

    Article  CAS  Google Scholar 

  32. Lowman HB, Chen YM, Skelton NJ, Mortensen DL, Tomlinson EE et al (1998) Molecular mimics of insulin-like growth factor 1 (IGF-1) for inhibiting IGF-I: IGF-binding protein interactions. Biochemistry 37:8870–8878

    Article  CAS  Google Scholar 

  33. Nilsson E, Carrero JJ, Heimbürger O, Hellberg O, Lindholm B et al (2016) A cohort study of insulin-like growth factor 1 and mortality in haemodialysis patients. Clin Kidney J 9:148–152

    Article  CAS  Google Scholar 

  34. Kocyigit I, Yilmaz MI, Simşek Y, Unal A, Sipahioglu MH et al (2013) The role of platelet activation in determining response to therapy in patients with primary nephrotic syndrome. Platelets 24:474–479

    Article  CAS  Google Scholar 

  35. Li X, Wu TT, Chen J, Qiu W (2017) Elevated expression levels of serum insulin-like growth factor-1, tumor necrosis factor-α and vascular endothelial growth factor 165 might exacerbate type 2 diabetic nephropathy. J Diabetes Investig 8:108–114

    Article  CAS  Google Scholar 

  36. Liu C, Zhang Y, Yuan L, Fu L, Mei C (2013) Rosiglitazone inhibits insulin-like growth factor-1-induced polycystic kidney disease cell growth and p70S6 kinase activation. Mol Med Rep 8:861–864

    Article  Google Scholar 

  37. Tarantini S, Valcarcel-Ares NM, Yabluchanskiy A, Springo Z, Fulop GA et al (2017) Insulin-like growth factor 1 deficiency exacerbates hypertension-induced cerebral microhemorrhages in mice, mimicking the aging phenotype. Aging Cell 16:469–479

    Article  CAS  Google Scholar 

  38. Miyajima A, Chen J, Lawrence C, Ledbetter S, Soslow RA et al (2000) Antibody to transforming growth factor-beta ameliorates tubular apoptosis in unilateral ureteral obstruction. Kidney Int 58:2301–2313

    Article  CAS  Google Scholar 

  39. Ziyadeh FN, Hoffman BB, Han DC, Iglesias-De La Cruz MC, Hong SW et al (2000) Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal anti-transforming growth factor-beta antibody in db/db diabetic mice. Proc Natl Acad Sci USA 97:8015–8020

    Article  CAS  Google Scholar 

  40. Iwano M, Kubo A, Nishino T, Sato H, Nishioka H et al (1996) Quantification of glomerular TGF-beta 1 mRNA in patients with diabetes mellitus. Kidney Int 49:1120–1126

    Article  CAS  Google Scholar 

  41. Yamamoto T, Nakamura T, Noble NA, Ruoslahti E, Border WA (1993) Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy. Proc Natl Acad Sci USA 90(1814–1818):12

    Google Scholar 

  42. Bodi I, Kimmel PL, Abraham AA, Svetkey LP, Klotman PE et al (1997) Renal TGF-beta in HIV-associated kidney diseases. Kidney Int 51:1568–1577

    Article  CAS  Google Scholar 

  43. Mekki K, Taleb W, Biuzidi N, Kaddous A, Bouchenak M (2010) Effect of hemodialysis and peritoneal dialysis on redox status in chronić renal failure patients: a comparative study. Lipids Health Dis 2010:9–93

    Google Scholar 

  44. Mehta T, Buzkova P, Kizer JR, Djousse L et al (2017) Higher plasma transforming growth factor (TGF)-β is associated with kidney disease in older community dwelling adults. BMC Nephrol 21(18):98

    Article  Google Scholar 

  45. Chimenz R, Lacquaniti A, Colavita L, Chirico V, Fede C et al (2016) High mobility group box 1 and tumor growth factor β: useful biomarkers in pediatric patients receiving peritoneal dialysis. Ren Fail 38:1370–1376

    Article  CAS  Google Scholar 

  46. Zhou Q, Bajo MA, Del Peso G, Yu X, Selgas R (2016) Preventing peritoneal membrane fibrosis in peritoneal dialysis patients. Kidney Int 90:515–524

    Article  Google Scholar 

  47. Cina D, Patel P, Bethune JC, Thoma J, Rodriguez-Lecompte JC et al (2009) Peritoneal morphological and functional changes associated with platelet-derived growth factor B. Nephrol Dial Transplant 24:448–457

    Article  CAS  Google Scholar 

  48. Yamada K, Hatakeyama E, Sakamaki T, Nishimura M, Arita S et al (2001) Involvement of platelet-derived growth factor and histocompatibility of DRB 1 in chronic renal allograft nephropathy. Transplantation 15(71):936–941

    Article  Google Scholar 

  49. Monroy MA, Fang J, Li S, Ferrer L, Birkenbach MP et al (2015) Chronic kidney disease alters vascular smooth muscle cell phenotype. Front Biosci (Landmark Ed) 20:784–795

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper was funded by NCN 2011/01/B/NZ5/04235 and by Pomeranian Medical University no. MB-134-141/15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elżbieta Cecerska-Heryć.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cecerska-Heryć, E., Heryć, R., Wiśniewska, M. et al. Regenerative potential of platelets in patients with chronic kidney disease. Int Urol Nephrol 51, 1831–1840 (2019). https://doi.org/10.1007/s11255-019-02190-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-019-02190-6

Keywords

Navigation