Skip to main content
Log in

Uroprotective effect of ambroxol in cyclophosphamide-induced cystitis in mice

  • Urology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

Hemorrhagic cystitis (HC) is defined as any types of acute or chronic inflammation of urinary bladder with several reasons. One of the most common causes of HC is cyclophosphamide (CYP), an effective antineoplastic agent, due to its urotoxic potential. Ambroxol (AMB) is a mucoactive drug that has been used for numerous respiratory diseases. Besides its mucolytic activity, AMB is a potent antioxidant and antiinflammatory agent that is becoming more attractive for the treatment of several oxidative/inflammatory disorders. The aim of this study was to evaluate the uroprotective potential of AMB in CYP-induced HC.

Method

Male Balb/c mice were pretreated with AMB (30, 70, and 100 mg/kg) once a day for 3 consecutive days before HC induction with CYP (300 mg/kg). Mesna (30 mg/kg;i.p.), only drug in the management of CYP-induced HC, was administered 20 min before; 4 and 8 h after cystitis induction. The urinary bladders were harvested and evaluated in functional, biochemical, and histological studies.

Results

CYP-induced HC markedly reduced acetylcholine (ACh)-induced contractions in detrusor strips and AMB at 100 mg/kg caused a significant increase in the responsiveness to ACh. Pretreatment with AMB prevented the elevation of malondialdehyde (MDA) and tumor necrosis factor-alpha (TNF-α) level, reduction of total glutathione (GSH) that induced by CYP. However, treatment with AMB did not improve the bladder weight and some histological parameters.

Conclusion

These results suggest that AMB pretreatment could improve CYP-induced HC via antioxidant and antiinflammatory activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ribeiro RA, Lima-Junior RCYP, Leite CAVG et al (2012) Chemotherapy-induced hemorrhagic cystitis: pathogenesis, pharmacological approaches and new insights. J Exp Integr Med 2(2):95–112

    Article  Google Scholar 

  2. Haldar S, Dru C, Bhowmick NA (2014) Mechanisms of hemorrhagic cystitis. Am J Clin Exp Urol 2(3):199–208

    PubMed  PubMed Central  Google Scholar 

  3. Shepherd JD, Pringle LE, Barnett MJ et al (1991) Mesna versus hyperhydration for the prevention of cyclophosphamide-induced hemorrhagic cystitis in bone marrow transplantation. J Clin Oncol 9(11):2016–2020

    Article  CAS  PubMed  Google Scholar 

  4. Keles I, Bozkurt MF, Cemek M et al (2014) Prevention of cyclophosphamide-induced hemorrhagic cystitis by resveratrol. A comperative experimental study with mesna. Int Urol Nephrol 46(12):2301–2310

    Article  CAS  PubMed  Google Scholar 

  5. Bhatia K, Ahmad F, Rashid H et al (2008) Protective effect of S-allylcysteine against cyclophosphamide-induced bladder hemorrhagic cystitis in mice. Food Chem Toxicol 46(11):3368–3374

    Article  CAS  PubMed  Google Scholar 

  6. Zhang SJ, Jiang JX, Ren QQ et al (2016) Ambroxol inhalation ameliorates LPS-induced airway inflammation and mucus secretion through the extracellular signal-regulated kinase 1/2 signaling pathway. Eur J Pharmacol 15(775):138–148

    Google Scholar 

  7. Rupali R, Dhot KS, Ilango KB et al (2012) Pharmacokinetic studies of ambroxol hydrochloride microspheres in rats after oral administration. IJRPC 2(2):280–288

    CAS  Google Scholar 

  8. Jauch R, Bozler G, Hammer R et al (1978) Ambroxol: Studies of metabolism in man and quantitative determination in biological samples. Arzneimittelforschung 28(5a):904–911

    CAS  PubMed  Google Scholar 

  9. Gillissen A, Bartling A, Schoen S et al (1997) Antioxidant function of ambroxol in mononuclear and polymorphonuclear cells in vitro. Lung 175(4):235–242

    Article  CAS  PubMed  Google Scholar 

  10. Nowak D, Pierscinski G, Drzewoski J (1995) Ambroxol inhibits doxorubicin-induced lipid peroxidation in heart of mice. Free Radic Biol Med 19(5):659–663

    Article  CAS  PubMed  Google Scholar 

  11. Jang YY, Song JH, Shin YK et al (2003) Depressant effects of ambroxol and erdosteine on cytokine synthesis, granule enzyme release, and free radical production in rat alveolar macrophages activated by lipopolysaccharide. Pharmacol Toxicol 92(4):173–179

    Article  CAS  PubMed  Google Scholar 

  12. Gaida W, Klinder K, Arndt K et al (2005) Ambroxol, a Nav1.8-preferring Na(+) channel blocker, effectively suppresses pain symptoms in animal models of chronic, neuropathic and inflammatory pain. Neuropharmacology 49(8):1220–1227

    Article  CAS  PubMed  Google Scholar 

  13. Hama AT, Plum AW, Sagen J (2010) Antinociceptive effect of ambroxol in rats with neuropathic spinal cord injury pain. Pharmacol Biochem Behav 97(2):249–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Leffler A, Reckzeh J, Nau C (2010) Block of sensory neuronal Na + channels by the secreolytic ambroxol is associated with an interaction with local anesthetic binding sites. Eur J Pharmacol 630(1–3):19–28

    Article  CAS  PubMed  Google Scholar 

  15. Su X, Wang L, Song Y et al (2004) Inhibition of inflammatory responses by ambroxol, a mucolytic agent, in a murine model of acute lung injury induced by lipopolysaccharide. Intensive Care Med 30(1):133–140

    Article  PubMed  Google Scholar 

  16. Nowak D, Pietras T, Antczak A et al (1993) Ambroxol inhibits endotoxin-induced lipid peroxidation in mice. Pol J Pharmacol 45(3):317–322

    CAS  PubMed  Google Scholar 

  17. Song J, Liu L, Li L et al (2014) Protective effects of lipoic acid and mesna on cyclophosphamide-induced haemorrhagic cystitis in mice. Cell Biochem Funct 32(2):125–132

    Article  CAS  PubMed  Google Scholar 

  18. de Oliveira MG, Monica FZ, Calmasini FB et al (2018) Deletion or pharmacological blockade of TLR4 confers protection against cyclophosphamide-induced mouse cystitis. Am J Physiol Renal Physiol 315(3):460–468

    Article  CAS  Google Scholar 

  19. Donmez MI, Inci K, Zeybek ND et al (2016) The early histological effects of intravesical instillation of platelet-rich plasma in cystitis models. Int Neurourol J 20(3):188–196

    Article  PubMed  PubMed Central  Google Scholar 

  20. Eltantawy FM, Sobh MAA, EL-Waseef AM et al (2018) Protective effect of Spirulina against cyclophosphamide-induced urotoxicity in mice. Egypt J Basic Appl Sci 5(3):191–196

    Article  Google Scholar 

  21. Korkmaz A, Topal T, Oter S (2007) Pathophysiological aspects of cyclophosphamide and ifosfamide induced hemorrhagic cystitis; implication of reactive oxygen and nitrogen species as well as PARP activation. Cell Biol Toxicol 23(5):303–312

    Article  CAS  PubMed  Google Scholar 

  22. Matz EL, Hsieh MH (2017) Review of advances in uroprotective agents for cyclophosphamide- and ifosfamide-induced hemorrhagic cystitis. Urology 100:16–19

    Article  PubMed  Google Scholar 

  23. Lima MV, Ferreira FV, Macedo FY et al (2007) Histological changes in bladders of patients submitted to ifosfamide chemotherapy even with mesna prophylaxis. Cancer Chemother Pharmacol 59(5):643–650

    Article  CAS  PubMed  Google Scholar 

  24. Dantas AC, Batista-Júnior FF, Macedo LF et al (2010) Protective effect of simvastatin in the cyclophosphamide-induced hemorrhagic cystitis in rats. Acta Cir Bras 25(1):43–46

    Article  PubMed  Google Scholar 

  25. Siu LL, Moore MJ (1998) Use of mesna to prevent ifosfamide-induced urotoxicity. Support Care Cancer 6(2):144–154

    Article  CAS  PubMed  Google Scholar 

  26. Etlik O, Tomur A, Deveci S et al (1997) Comparison of the uroprotective efficacy of mesna and HBO treatments in cyclophosphamide-induced hemorrhagic cystitis. J Urol 158(6):2296–2299

    Article  CAS  PubMed  Google Scholar 

  27. Morais MM, Belarmino-Filho JN, Brito GA et al (1998) Pharmacological and histopathological study of cyclophosphamide-induced hemorrhagic cystitis—comparison of the effects of dexamethasone and Mesna. Braz J Med Biol Res 32(10):1211–1215

    Article  Google Scholar 

  28. Eser N, Gocmen C, Erdogan S et al (2012) Effect of silymarin on bladder overactivity in cyclophosphamide-induced cystitis rat model. Phytomedicine 19(8–9):840–845

    Article  CAS  PubMed  Google Scholar 

  29. Liu M, Shen S, Kendig DM et al (2015) Inhibition of NMDAR reduces bladder hypertrophy and improves bladder function in cyclophosphamide induced cystitis. J Urol 193(5):1676–1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Giglio D, Ryberg AT, To K et al (2005) Altered muscarinic receptor subtype expression and functional responses in cyclophosphamide induced cystitis in rats. Auton Neurosci 122(1–2):9–20

    Article  CAS  PubMed  Google Scholar 

  31. Yurdakul T, Kulaksizoglu H, Piskin MM et al (2010) Combination antioxidant effect of a-tocoferol and erdosteine in ischemia–reperfusion injury in rat model. Int Urol Nephrol 42:647–655

    Article  CAS  PubMed  Google Scholar 

  32. Jamshidzadeh A, Niknahad H, Azarpira N et al (2009) Effect of lycopene on cyclophosphamide induced hemorrhagic cystitis in rats. Iran J Med Sci 34(1):46–52

    Google Scholar 

  33. Abo-Salem OM (2013) Uroprotective effect of pentoxifylline in cyclophosphamide-induced hemorrhagic cystitis in rats. J Biochem Mol Toxicol 27(7):343–350

    Article  CAS  PubMed  Google Scholar 

  34. Abraham P, Isaac B, Ramamoorthy H et al (2011) Oral glutamine attenuates cyclophosphamide-induced oxidative stress in the bladder but does not prevent hemorrhagic cystitis in rats. J Med Toxicol 7(2):118–124

    Article  CAS  PubMed  Google Scholar 

  35. Abd-Allah Adel RA, Gado AM, Al-Majed AA et al (2004) Protective effcet of taurine against cyclophoshamide-induced urinary bladder toxicity in rats. Clin Exp Pharmacol Physiol 32(3):167–172

    Article  Google Scholar 

  36. Zhi QM, Yang LT, Sun HC (2011) Protective effect of ambroxol against paraquat-induced pulmonary fibrosis in rats. Intern Med 50(18):1879–1887

    Article  CAS  PubMed  Google Scholar 

  37. Iynem Alkan H, Alademir AZ, Obek C et al (2004) The effect of prostate cancer and antianrogenic therapy on lipid peroxidation and antioxidant systems. Int Urol Nephrol 36(1):57–62

    Article  PubMed  Google Scholar 

  38. Al-Yahya AA, Al-Majed AA, Gado AM et al (2009) Acacia Senegal gum exudate offers protection against cyclophosphamide-induced urinary bladder cytotoxicity. Oxid Med Cell Longev 2(4):207–213

    Article  PubMed  PubMed Central  Google Scholar 

  39. Souza-Fiho MV, Lima MV, Pompeu MM et al (1997) Involvement of nitric oxide in the pathogenesis of cyclophosphamide-induced hemorrhagic cystitis. Am J Pathol 150(1):247–256

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ribeiro RA, Freitas HC, Campos MC et al (2002) Tumor necrosis factor-alpha and interleukin-1beta mediate the production of nitric oxide involved in the pathogenesis of ifosfamide induced hemorrhagic cystitis in mice. J Urol 167(5):2229–2234

    Article  CAS  PubMed  Google Scholar 

  41. Oter S, Korkmaz A, Oztas E et al (2004) Inducible nitric oxide synthase inhibition in cyclophosphamide induced hemorrhagic cystitis in rats. Urol Res 32(3):185–189

    Article  CAS  PubMed  Google Scholar 

  42. Malley SE, Vizzard MA (2002) Changes in urinary bladder cytokine mRNA and protein after cyclophosphamide-induced cystitis. Physiol Genom 9(1):5–13

    Article  CAS  Google Scholar 

  43. Sakura M, Masuda H, Matsuoka Y et al (2009) Rolipram, a specific type-4 phosphodiesterase inhibitor, inhibits cyclophosphamide-induced haemorrhagic cystitis in rats. BJU Int 103(2):264–269

    Article  CAS  PubMed  Google Scholar 

  44. Ferretti C, Coppi G, Blengio M et al (1992) Inhibitory effect of theophylline, theophylline-7-acetic acid, ambroxol and ambroxol-theophylline-7-acetate on rat lung cAMP phosphodiesterase isoenzymes. Int J Tissue React 14(1):31–36

    CAS  PubMed  Google Scholar 

  45. Yamaya M, Nishimura H, Nadine LK et al (2014) Ambroxol inhibits rhinovirus infection in primary cultures of human tracheal epithelial cells. Arch Pharm Res 37(4):520–529

    Article  CAS  PubMed  Google Scholar 

  46. Ge B, Yang D, Wu X et al (2018) Cytoprotective effects of glycyrrhetinic acid liposome against cyclophosphamide-induced cystitis through inhibiting inflammatory stress. Int Immunopharmacol 54:139–144

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Scientific Research Project Coordination Unit of Karadeniz Technical University (Grant Number: THD-2018-7356). The authors are grateful to Asst. Prof. Mahmoud Abudayyak for helping to determine the antioxidant assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mine Kadioglu.

Ethics declarations

Ethical approval

The experimental protocols were approved by Karadeniz Technical University the Institutional Animal Ethical Committee (2016/29). All animal studies were performed according to the Guide for the Care and Use of Laboratory Animals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barut, E.N., Engin, S., Barut, B. et al. Uroprotective effect of ambroxol in cyclophosphamide-induced cystitis in mice. Int Urol Nephrol 51, 803–810 (2019). https://doi.org/10.1007/s11255-019-02128-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-019-02128-y

Keywords

Navigation