Skip to main content
Log in

Sickle cell nephropathy: an update on pathophysiology, diagnosis, and treatment

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Sickle cell nephropathy is a major complication of sickle cell disease. It manifests in different forms, including glomerulopathy, proteinuria, hematuria, and tubular defects, and frequently results in end-stage renal disease (ESRD). Different pathophysiologic mechanisms have been proposed to explain the development of nephropathy in SCD, where hemolysis and vascular occlusion are the main contributors in the manifestations of this disease. Markers of renal injury, such as proteinuria and tubular dysfunction, have been associated with outcomes among patients with sickle cell nephropathy and provide means for early detection of nephropathy and screening prior to progression to renal failure. In small-sized clinical trials, hydroxyurea has demonstrated to be effective in slowing the progression to ESRD. Dialysis and renal transplantation represent the last resort for patients with sickle cell nephropathy. Nevertheless, despite the availability of diagnostic and therapeutic strategies, sickle cell nephropathy remains a challenging and under-recognized complication for patients with sickle cell disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Modell B, Darlison M (2008) Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ 86:480–487

    Article  PubMed  PubMed Central  Google Scholar 

  2. Allon M (1990) Renal abnormalities in sickle cell disease. Arch Intern Med 150:501–504

    Article  PubMed  CAS  Google Scholar 

  3. Day TG, Drasar ER, Fulford T, Sharpe CC, Thein SL (2012) Association between hemolysis and albuminuria in adults with sickle cell anemia. Haematologica 97:201–205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Haymann JP, Stankovic K, Levy P, Avellino V, Tharaux PL, Letavernier E et al (2010) Glomerular hyperfiltration in adult sickle cell anemia: a frequent hemolysis associated feature. Clin J Am Soc Nephrol 5:756–761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Drawz P, Ayyappan S, Nouraie M, Saraf S, Gordeuk V, Hostetter T et al (2015) Kidney disease among patients with sickle cell disease, hemoglobin SS and SC. Clin J Am Soc Nephrol 11:207–215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Scheinman JI (2009) Sickle cell disease and the kidney. Nat Clin Pract Nephrol 5:78–88

    Article  PubMed  Google Scholar 

  7. Kato GJ, Wang Z, Machado RF, Blackwelder WC, Taylor JG, Hazen SL (2009) Endogenous nitric oxide synthase inhibitors in sickle cell disease: abnormal levels and correlations with pulmonary hypertension, desaturation, haemolysis, organ dysfunction and death. Br J Haematol 145:506–513

    Article  PubMed  CAS  Google Scholar 

  8. Khamaisi M, Heyman SN (2009) The role of hypoxia and HIF-mediated hypoxia adaptive response in the progression of chronic kidney disease. Harefuah 148:721–726

    PubMed  Google Scholar 

  9. Heimlich JB, Speed JS, O’Connor PM, Pollock JS, Townes TM, Meiler SE et al (2016) Endothelin-1 contributes to the progression of renal injury in sickle cell disease via reactive oxygen species. Br J Pharmacol 173:386–395

    Article  PubMed  CAS  Google Scholar 

  10. Becker AM (2011) Sickle cell nephropathy: challenging the conventional wisdom. Pediatric Nephrol 26:2099–2109

    Article  Google Scholar 

  11. Nath KA, Katusic ZS (2012) Vasculature and kidney complications in sickle cell disease. J Am Soc Nephrol 23:781–784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Gonzalez-Michaca L, Farrugia G, Croatt AJ, Alam J, Nath KA (2004) Heme: a determinant of life and death in renal tubular epithelial cells. Am J Physiol Renal Physiol 286:F370–F377

    Article  PubMed  CAS  Google Scholar 

  13. Tracz MJ, Alam J, Nath KA (2007) Physiology and pathophysiology of heme: implications for kidney disease. J Am Soc Nephrol 18:414–420

    Article  PubMed  CAS  Google Scholar 

  14. Juncos JP, Grande JP, Croatt AJ, Hebbel RP, Vercellotti GM, Katusic ZS et al (2010) Early and prominent alterations in hemodynamics, signaling, and gene expression following renal ischemia in sickle cell disease. Am J Physiol Renal Physiol 298:F892–F899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Audard V, Moutereau S, Vandemelebrouck G, Habibi A, Khellaf M, Grimbert P et al (2014) First evidence of subclinical renal tubular injury during sickle-cell crisis. Orphanet J Rare Dis 9:67

    Article  PubMed  PubMed Central  Google Scholar 

  16. Deux J-F, Audard V, Brugières P, Habibi A, Manea E-M, Guillaud-Danis C et al (2017) Magnetic resonance imaging assessment of kidney oxygenation and perfusion during sickle cell vaso-occlusive crises. Am J Kidney Dis 69:51–59

    Article  PubMed  Google Scholar 

  17. Nath KA, Hebbel RP (2015) Sickle cell disease: renal manifestations and mechanisms. Nat Rev Nephrol 11:161–171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Buckalew VM (1974) Renal manifestations of sickle cell disease. Arch Intern Med 133:660

    Article  PubMed  Google Scholar 

  19. Pitcock JA, Muirhead EE, Hatch FE, Johnson JG, Kelly BJ (1970) Early renal changes in sickle cell anemia. Arch Pathol 90:403–410

    PubMed  CAS  Google Scholar 

  20. Bhathena DB, Sondheimer JH (1991) The glomerulopathy of homozygous sickle hemoglobin (SS) disease: morphology and pathogenesis. J Am Soc Nephrol 1:1241–1252

    PubMed  CAS  Google Scholar 

  21. Bakir AA, Hathiwala SC, Ainis H, Hryhorczuk DO, Rhee HL, Levy PS et al (1987) Prognosis of the nephrotic syndrome in sickle glomerulopathy. Am J Nephrol 7:110–115

    Article  PubMed  CAS  Google Scholar 

  22. Marsenic O, Couloures KG, Wiley JM (2008) Proteinuria in children with sickle cell disease. Nephrol Dial Transplant 23:715–720

    Article  PubMed  CAS  Google Scholar 

  23. Sharpe CC, Thein SL (2011) Sickle cell nephropathy—a practical approach. Br J Haematol 155:287–297

    Article  PubMed  CAS  Google Scholar 

  24. Pham PT, Pham PC, Wilkinson AH, Lew SQ (2000) Renal abnormalities in sickle cell disease. Kidney Int 57:1–8

    Article  PubMed  CAS  Google Scholar 

  25. Guasch A, Navarrete J, Nass K, Zayas CF (2006) Glomerular involvement in adults with sickle cell hemoglobinopathies: prevalence and clinical correlates of progressive renal failure. J Am Soc Nephrol 17:2228–2235

    Article  PubMed  CAS  Google Scholar 

  26. Ataga KI, Derebail VK, Archer DR (2014) The glomerulopathy of sickle cell disease. Am J Hematol 89:907–914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Sesso R, Almeida MA, Figueiredo MS, Bordin JO (1998) Renal dysfunction in patients with sickle cell anemia or sickle cell trait. Braz J Med Biol Res 31:1257–1262

    Article  PubMed  CAS  Google Scholar 

  28. Abdu A, Emokpae MA, Uadia PO, Kuliya-Gwarzo A (2011) Proteinuria among adult sickle cell anemia patients in Nigeria. Ann Afr Med 10:34–37

    Article  PubMed  CAS  Google Scholar 

  29. Aygun B, Mortier NA, Smeltzer MP, Hankins JS, Ware RE (2011) Glomerular hyperfiltration and albuminuria in children with sickle cell anemia. Pediatric Nephrol 26:1285–1290

    Article  Google Scholar 

  30. Aleem A (2008) Renal abnormalities in patients with sickle cell disease: a single center report from Saudi Arabia. Saudi J Kidney Dis Transplant 19:194–199

    Google Scholar 

  31. Hirschberg R (2010) Glomerular hyperfiltration in sickle cell disease. Clin J Am Soc Nephrol 5:748–749

    Article  PubMed  Google Scholar 

  32. Wigfall DR, Ware RE, Burchinal MR, Kinney TR, Foreman JW (2000) Prevalence and clinical correlates of glomerulopathy in children with sickle cell disease. J Pediatr 136:749–753

    PubMed  CAS  Google Scholar 

  33. Saraf SL, Molokie RE, Gowhari M, Hassan J, Lash JP, Gordeuk VR (2013) Hyperfiltration is a risk factor for the development of microalbuminuria in sickle cell anemia. Blood 122:1003-03

    Google Scholar 

  34. Maigne G, Ferlicot S, Galacteros F, Belenfant X, Ulinski T, Niaudet P et al (2010) Glomerular lesions in patients with sickle cell disease. Medicine 89:18–27

    Article  PubMed  Google Scholar 

  35. Zar T, Krishnaswamy J, Yamase HT, Samson W (2011) Membranoproliferative glomerulonephritis in a postpartum woman with sickle cell disease. Iran J Kidney Dis 5:63–65

    PubMed  Google Scholar 

  36. Kaze FF, Kengne AP, Atanga LC, Monny Lobe M, Menanga AP, Halle M-P, Chetcha Chemegni B, Ngo Sack F, Kingue S, Ashuntantang G (2013) Kidney function, urinalysis abnormalities and correlates in equatorial Africans with sickle cell disease. Clin Kidney J 6:5–20

    Article  Google Scholar 

  37. Bolarinwa RA, Akinlade KS, Kuti MA, Olawale OO, Akinola NO (2012) Renal disease in adult Nigerians with sickle cell anemia: a report of prevalence, clinical features and risk factors. Saudi J Kidney Dis Transplant 23:171–175

    CAS  Google Scholar 

  38. Saraf SL, Zhang X, Kanias T, Lash JP, Molokie RE, Oza B et al (2014) Haemoglobinuria is associated with chronic kidney disease and its progression in patients with sickle cell anaemia. Br J Haematol 164:729–739

    Article  PubMed  CAS  Google Scholar 

  39. Baron BW, Mick R, Baron JM (1994) Hematuria in sickle cell anemia-not always benign: evidence for excess frequency of sickle cell anemia in African Americans with renal cell carcinoma. Acta Haematol 92:119–122

    Article  PubMed  CAS  Google Scholar 

  40. Davis CJ, Mostofi FK, Sesterhenn IA (1995) Renal medullary carcinoma the seventh sickle cell nephropathy. Am J Surg Pathol 19:1–11

    Article  PubMed  Google Scholar 

  41. Lopez Revuelta K, Ricard Andres MP (2011) Kidney abnormalities in sickle cell disease. Nefrologia 31:591–601

    PubMed  CAS  Google Scholar 

  42. Wolf RB, Kassim AA, Goodpaster RL, DeBaun MR (2014) Nocturnal enuresis in sickle cell disease. Expert Rev Hematol 7:245–254

    Article  PubMed  CAS  Google Scholar 

  43. da Silva GB Jr, Liborio AB, Daher Ede F (2011) New insights on pathophysiology, clinical manifestations, diagnosis, and treatment of sickle cell nephropathy. Ann Hematol 90:1371–1379

    Article  PubMed  Google Scholar 

  44. Maurel S, Stankovic Stojanovic K, Avellino V, Girshovich A, Letavernier E, Grateau G et al (2014) Prevalence and correlates of metabolic acidosis among patients with homozygous sickle cell disease. Clin J Am Soc Nephrol 9:648–653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Sharpe CC, Thein SL (2014) How I treat renal complications in sickle cell disease. Blood 123:3720–3726

    Article  PubMed  CAS  Google Scholar 

  46. Raj VM, Freundlich M, Hamideh D, Alvarez O, Seeherunvong W, Abitbol C et al (2014) Abnormalities in renal tubular phosphate handling in children with sickle cell disease. Pediatr Blood Cancer 61:2267–2270

    Article  PubMed  CAS  Google Scholar 

  47. Audard V, Homs S, Habibi A, Galacteros F, Bartolucci P, Godeau B et al (2010) Acute kidney injury in sickle patients with painful crisis or acute chest syndrome and its relation to pulmonary hypertension. Nephrol Dial Transplant 25:2524–2529

    Article  PubMed  Google Scholar 

  48. Powars DR, Chan LS, Hiti A, Ramicone E, Johnson C (2005) Outcome of sickle cell anemia: a 4-decade observational study of 1056 patients. Medicine. 84:363–376

    Article  PubMed  Google Scholar 

  49. Thomas AN, Pattison C, Serjeant GR (1982) Causes of death in sickle-cell disease in Jamaica. Br Med J (Clin Res Ed) 285:633

    Article  CAS  Google Scholar 

  50. Quinn CT, Rogers ZR, McCavit TL, Buchanan GR (2010) Improved survival of children and adolescents with sickle cell disease. Blood 115:3447–3452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Baddam S, Aban I, Hilliard L, Howard T, Askenazi D, Lebensburger JD (2017) Acute kidney injury during a pediatric sickle cell vaso-occlusive pain crisis. Pediatr Nephrol 32:1451–1456

    Article  PubMed  PubMed Central  Google Scholar 

  52. McClellan AC, Luthi JC, Lynch JR, Soucie JM, Kulkarni R, Guasch A et al (2012) High one year mortality in adults with sickle cell disease and end-stage renal disease. Br J Haematol 159:360–367

    Article  PubMed  PubMed Central  Google Scholar 

  53. Abbott K, Hypolite I, Agodoa L (2002) Sickle cell nephropathy at end-stage renal disease in the United States: patient characteristics and survival. Clin Nephrol 58:9–15

    Article  PubMed  CAS  Google Scholar 

  54. Sundaram N, Bennett M, Wilhelm J, Kim MO, Atweh G, Devarajan P et al (2011) Biomarkers for early detection of sickle nephropathy. Am J Hematol 86:559–566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Badr M, El Koumi MA, Ali YF, El-Morshedy S, Almonem NA, Hassan T et al (2013) Renal tubular dysfunction in children with sickle cell haemoglobinopathy. Nephrology 18:299–303

    Article  PubMed  CAS  Google Scholar 

  56. Tharaux PL, Hagege I, Placier S, Vayssairat M, Kanfer A, Girot R et al (2005) Urinary endothelin-1 as a marker of renal damage in sickle cell disease. Nephrol Dial Transplant 20:2408–2413

    Article  PubMed  CAS  Google Scholar 

  57. Hamideh D, Raj V, Harrington T, Li H, Margolles E, Amole F et al (2014) Albuminuria correlates with hemolysis and NAG and KIM-1 in patients with sickle cell anemia. Pediatr Nephrol 29:1997–2003

    Article  PubMed  Google Scholar 

  58. Sabaa N, de Franceschi L, Bonnin P, Castier Y, Malpeli G, Debbabi H et al (2008) Endothelin receptor antagonism prevents hypoxia-induced mortality and morbidity in a mouse model of sickle-cell disease. J Clin Invest 118:1924–1933

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Kasztan M, Fox BM, Speed JS, De Miguel C, Gohar EY, Townes TM et al (2017) Long-term endothelin—a receptor antagonism provides robust renal protection in humanized sickle cell disease mice. J Am Soc Nephrol 28:2443–2458

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kormann R, Jannot A-S, Narjoz C, Ribeil J-A, Manceau S, Delville M et al (2017) Roles of APOL1 G1 and G2 variants in sickle cell disease patients: kidney is the main target. Br J Haematol 179:323–335

    Article  PubMed  CAS  Google Scholar 

  61. Saraf SL, Shah BN, Zhang X, Han J, Tayo BO, Abbasi T et al (2016) APOL1, α-thalassemia, and BCL11A variants as a genetic risk profile for progression of chronic kidney disease in sickle cell anemia. Haematologica 102:e1–e6

    Article  PubMed  CAS  Google Scholar 

  62. Geard A, Pule GD, Chetcha Chemegni B, Ngo Bitoungui VJ, Kengne AP, Chimusa ER et al (2017) Clinical and genetic predictors of renal dysfunctions in sickle cell anaemia in Cameroon. Br J Haematol 178:629–639

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Unal S, Kotan C, Delibas A, Oztas Y, Cystatin C (2013) Beta2 Microglobulin, N-Acetyl-beta-d-glucosaminidase, Retinol-Binding Protein, and Endothelin 1 levels in the evaluation of sickle cell disease nephropathy. Pediatr Hematol Oncol 32:250–257

    Article  PubMed  CAS  Google Scholar 

  64. Alvarez O, Zilleruelo G, Wright D, Montane B, Lopez-Mitnik G (2006) Serum cystatin C levels in children with sickle cell disease. Pediatr Nephrol 21:533–537

    Article  PubMed  Google Scholar 

  65. dos Santos TE, Goncalves RP, Barbosa MC, da Silva GB Jr., Daher Ede F (2015) Monocyte chemoatractant protein-1: a potential biomarker of renal lesion and its relation with oxidative status in sickle cell disease. Blood Cells Mol Dis 54:297–301

    Article  PubMed  CAS  Google Scholar 

  66. Emokpae M, Abdu A, Gwaram B (2016) Neutrophil-to-lymphocyte, platelet-to-lymphocyte ratios and their association with atherogenic index of plasma in sickle cell nephropathy. J Appl Hematol 7:24–29

    Article  Google Scholar 

  67. Anderson S, Meyer TW, Rennke HG, Brenner BM (1985) Control of glomerular hypertension limits glomerular injury in rats with reduced renal mass. J Clin Invest 76:612–619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Falk RJ, Scheinman J, Phillips G, Orringer E, Johnson A, Jennette JC (1992) Prevalence and pathologic features of sickle cell nephropathy and response to inhibition of angiotensin-converting enzyme. N Engl J Med 326:910–915

    Article  PubMed  CAS  Google Scholar 

  69. Quinn CT, Saraf SL, Gordeuk VR, Fitzhugh CD, Creary SE, Bodas P et al (2017) Losartan for the nephropathy of sickle cell anemia: a phase-2, multicenter trial. Am J Hematol 92:E520–E528

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Nasr SH, Markowitz GS, Sentman RL, D’Agati VD (2006) Sickle cell disease, nephrotic syndrome, and renal failure. Kidney Int 69:1276–1280

    Article  PubMed  CAS  Google Scholar 

  71. Kasztan M, Sun C-W, Townes TM, Pollock DM (2016) Endothelin-1 mediates glomerular and tubular injury in sickle cell mice. FASEB J 30:1220-7

    Google Scholar 

  72. Brawley OW, Cornelius LJ, Edwards LR, Gamble VN, Green BL, Inturrisi CE et al (2008) NIH consensus development statement on hydroxyurea treatment for sickle cell disease. NIH Consens State Sci Statements 25:1–30

    PubMed  Google Scholar 

  73. Allon M, Lawson L, Eckman JR, Delaney V, Bourke E (1988) Effects of nonsteroidal antiinflammatory drugs on renal function in sickle cell anemia. Kidney Int 34:500–506

    Article  PubMed  CAS  Google Scholar 

  74. Nielsen L, Canouï-Poitrine F, Jais J-P, Dahmane D, Bartolucci P, Bentaarit B et al (2016) Morbidity and mortality of sickle cell disease patients starting intermittent haemodialysis: a comparative cohort study with non-Sickle dialysis patients. Br J Haematol 174:148–152

    Article  PubMed  CAS  Google Scholar 

  75. Montgomery R, Zibari G, Hill GS, Ratner LE (1994) Renal transplantation in patients with sickle cell nephropathy. Transplantation 58:618–620

    Article  PubMed  CAS  Google Scholar 

  76. Bleyer AJ, Donaldson LA, McIntosh M, Adams PL (2001) Relationship between underlying renal disease and renal transplantation outcome. Am J Kidney Dis 37:1152–1161

    Article  PubMed  CAS  Google Scholar 

  77. Ojo AO, Govaerts TC, Schmouder RL, Leichtman AB, Leavey SF, Wolfe RA et al (1999) Renal transplantation in end-stage sickle cell nephropathy. Transplantation 67:291–295

    Article  PubMed  CAS  Google Scholar 

  78. Charache S, Terrin ML, Moore RD, Dover GJ, Barton FB, Eckert SV et al (1995) Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. N Engl J Med 332:1317–1322

    Article  PubMed  CAS  Google Scholar 

  79. Thornburg CD, Dixon N, Burgett S, Mortier NA, Schultz WH, Zimmerman SA et al (2009) A pilot study of hydroxyurea to prevent chronic organ damage in young children with sickle cell anemia. Pediatr Blood Cancer 52:609–615

    Article  PubMed  PubMed Central  Google Scholar 

  80. Laurin L-P, Nachman PH, Desai PC, Ataga KI, Derebail VK (2013) Hydroxyurea is associated with lower prevalence of albuminuria in adults with sickle cell disease. Nephrol Dial Transplant 29:1211–1218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Aygun B, Mortier NA, Smeltzer MP, Shulkin BL, Hankins JS, Ware RE (2013) Hydroxyurea treatment decreases glomerular hyperfiltration in children with sickle cell anemia. Am J Hematol 88:116–119

    Article  PubMed  CAS  Google Scholar 

  82. Alvarez O, Miller ST, Wang WC, Luo Z, McCarville MB, Schwartz GJ et al (2012) Effect of hydroxyurea treatment on renal function parameters: results from the multi-center placebo-controlled BABY HUG clinical trial for infants with sickle cell anemia. Pediatr Blood Cancer 59:668–674

    Article  PubMed  PubMed Central  Google Scholar 

  83. Bartolucci P, Habibi A, Stehle T, Di Liberto G, Rakotoson MG, Gellen-Dautremer J et al (2015) Six months of hydroxyurea reduces albuminuria in patients with sickle cell disease. J Am Soc Nephrol 27:1847–1853

    Article  PubMed  PubMed Central  Google Scholar 

  84. Tehseen S, Joiner CH, Lane PA, Yee ME (2017) Changes in urine albumin to creatinine ratio with the initiation of hydroxyurea therapy among children and adolescents with sickle cell disease. Pediatr Blood Cancer 64:e26665

    Article  CAS  Google Scholar 

  85. Weber ML, Vang D, Velho PE, Gupta P, Crosson JT, Hebbel RP et al (2012) Morphine promotes renal pathology in sickle mice. Int J Nephrol Renov Dis 5:109–118

    CAS  Google Scholar 

  86. Weber ML, Chen C, Li Y, Farooqui M, Nguyen J, Poonawala T et al (2013) Morphine stimulates platelet-derived growth factor receptor-beta signalling in mesangial cells in vitro and transgenic sickle mouse kidney in vivo. Br J Anaesth 111:1004–1012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

The authors declare that they received no funding for this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing, editing, and proofreading of the manuscript.

Corresponding author

Correspondence to Sola Aoun Bahous.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hariri, E., Mansour, A., El Alam, A. et al. Sickle cell nephropathy: an update on pathophysiology, diagnosis, and treatment. Int Urol Nephrol 50, 1075–1083 (2018). https://doi.org/10.1007/s11255-018-1803-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-018-1803-3

Keywords

Navigation