Skip to main content
Log in

Evaluation of glomerular filtration rate by different equations in Chinese elderly with chronic kidney disease

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

Performance of equations in elderly with chronic kidney disease (CKD) was debated. We aimed to access the performances of estimating equations for glomerular filtration rate in Chinese elderly population with chronic kidney disease.

Methods

Participants [N = 218, median age, 82 (range 75–96)] with CKD underwent renal dynamic imaging using technetium-99m diethylene-triamine-penta-acetic acid (99mTc-DTPA). The performances of glomerular filtration rate equations including the Cockcroft–Gault equation, the MDRD (Modification of Diet in Renal Disease) equation for Chinese, 3 CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) equations, and 2 BIS (Berlin Initiative Study) equations were compared.

Results

Median mGFR was 47.62 (3.00–135.00) ml/min/1.73 m2. Smaller biases were shown in BIS-2 equation and CKD-EPI-Cr equation (0.63 ml/min/1.73 m2 and −1.22 ml/min/1.73 m2). Interquartile range of the differences was least with BIS-2 equation and CKD-EPI-Cr-Cys equation (4.36 ml/min/1.73 m2 and 9.17 ml/min/1.73 m2). For accuracy (percentage of eGFR within 30 % of the mGFR, P30), performance of BIS-2, CKD-EPI-Cr-Cys, and BIS-1 equation was superior (94.50, 89.91, and 88.53 %, respectively). In terms of accuracy (root-mean-square error, RMSE), BIS-2 equation, CKD-EPI-Cr-Cys equation, and BIS-1 equation also performed better (7.21 ml/min/1.73 m2, 8.87 ml/min/1.73 m2 and 9.82 ml/min/1.73 m2). GFR category misclassification rates were smaller in BIS-2 equation, CKD-EPI-Cr-Cys equation and BIS-1 equation (16.51, 20.64, and 25.69 %, respectively).

Conclusion

Compared with other equations, the BIS-2 equation performed better in the estimation of glomerular filtration rate for Chinese elderly with CKD aged 75 or above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chen W, Chen W, Wang H et al (2009) Prevalence and risk factors associated with chronic kidney disease in an adult population from southern China. Nephrol Dial Transpl 24:1205–1212

    Article  Google Scholar 

  2. Zhang L, Zhang P, Wang F et al (2008) Prevalence and factors associated with CKD: a population study from Beijing. Am J Kidney Dis 51:373–384

    Article  PubMed  Google Scholar 

  3. Liu BC, Wu XC, Wang YL et al (2008) Investigation of the prevalence of CKD in 13,383 Chinese hospitalised adult patients. Clin Chim Acta 387:128–132

    Article  CAS  PubMed  Google Scholar 

  4. Stevens LA, Coresh J, Greene T et al (2006) Assessing kidney function—measured and estimated glomerular filtration rate. N Engl J Med 354:2473–2483

    Article  CAS  PubMed  Google Scholar 

  5. Dharnidharka VR, Kwon C, Stevens G (2002) Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis 40:221–226

    Article  CAS  PubMed  Google Scholar 

  6. Inker LA, Schmid CH, Tighiouart H et al (2012) Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 367:20–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Levey AS, Bosch JP, Lewis JB et al (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 130:461–470

    Article  CAS  PubMed  Google Scholar 

  8. Levey AS, Stevens LA, Schmid CH et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kilbride HS, Stevens PE, Eaglestone G et al (2013) Accuracy of the MDRD (Modification of Diet in Renal Disease) study and CKD-EPI (CKD Epidemiology Collaboration) equations for estimation of GFR in the elderly. Am J Kidney Dis 61:57–66

    Article  PubMed  Google Scholar 

  10. Liu X, Cheng MH, Shi CG et al (2012) Variability of glomerular filtration rate estimation equations in elderly Chinese patients with chronic kidney disease. Clin Interv Aging 7:409–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schaeffner ES, Ebert N, Delanaye P et al (2012) Two novel equations to estimate kidney function in persons aged 70 years or older. Ann Intern Med 157:471–481

    Article  PubMed  Google Scholar 

  12. National Kidney Foundation (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39(2 Suppl 1):S1–S266

  13. Heikkinen JO, Kuikka JT, Ahonen AK et al (2001) Quality of dynamic radionuclide renal imaging: multicentre evaluation using a functional renal phantom. Nucl Med Commun 22:987–995

    Article  CAS  PubMed  Google Scholar 

  14. Gates GF (1984) Computation of glomerular filtration rate with Tc-99 m DTPA: an in-house computer program. J Nucl Med 25:613–618

    CAS  PubMed  Google Scholar 

  15. Du Bois D, Du Bois EF (1989) A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition 5:303–311 (discussion 312-313)

    PubMed  Google Scholar 

  16. Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41

    Article  CAS  PubMed  Google Scholar 

  17. Ma YC, Zuo L, Chen JH et al (2006) Modified glomerular filtration rate estimating equation for Chinese patients with chronic kidney disease. J Am Soc Nephrol 17:2937–2944

    Article  PubMed  Google Scholar 

  18. Zhang L, Wang F, Wang L et al (2012) Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet 379:815–822

    Article  PubMed  Google Scholar 

  19. Chadban SJ, Briganti EM, Kerr PG et al (2003) Prevalence of kidney damage in Australian adults: the AusDiab kidney study. J Am Soc Nephrol 14:S131–S138

    Article  PubMed  Google Scholar 

  20. Coresh J, Selvin E, Stevens LA et al (2007) Prevalence of chronic kidney disease in the United States. JAMA 298:2038–2047

    Article  CAS  PubMed  Google Scholar 

  21. Yamagata K, Yagisawa T, Nakai S et al (2015) Prevalence and incidence of chronic kidney disease stage G5 in Japan. Clin Exp Nephrol 19:54–64

    Article  CAS  PubMed  Google Scholar 

  22. Zhang QL, Rothenbacher D (2008) Prevalence of chronic kidney disease in population-based studies: systematic review. BMC Public Health 8:117

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kurella M, Covinsky KE, Collins AJ et al (2007) Octogenarians and nonagenarians starting dialysis in the United States. Ann Intern Med 146:177–183

    Article  PubMed  Google Scholar 

  24. Lin MY, Chiu YW, Lee CH et al (2013) Factors associated with CKD in the elderly and nonelderly population. Clin J Am Soc Nephrol 8:33–40

    Article  CAS  PubMed  Google Scholar 

  25. Swedko PJ, Clark HD, Paramsothy K et al (2003) Serum creatinine is an inadequate screening test for renal failure in elderly patients. Arch Intern Med 163:356–360

    Article  CAS  PubMed  Google Scholar 

  26. Van Pottelbergh G, Van Heden L, Mathei C et al (2010) Methods to evaluate renal function in elderly patients: a systematic literature review. Age Ageing 39:542–548

    Article  PubMed  Google Scholar 

  27. Huang Q, Sun X, Chen Y et al (2015) A study of the applicability of GFR evaluation equations for an elderly Chinese population. J Nutr Health Aging 19:693–701

    Article  CAS  PubMed  Google Scholar 

  28. Van Pottelbergh G, Mertens A, Azermai M et al (2014) Drug prescriptions unadapted to the renal function in patients aged 80 years and older. Eur J Gen Pract 20:190–195

    Article  PubMed  Google Scholar 

  29. Liu X, Chen J, Wang C et al (2013) Assessment of glomerular filtration rate in elderly patients with chronic kidney disease. Int Urol Nephrol 45:1475–1482

    Article  PubMed  Google Scholar 

  30. Ye X, Wei L, Pei X et al (2014) Application of creatinine- and/or cystatin C-based glomerular filtration rate estimation equations in elderly Chinese. Clin Interv Aging 9:1539–1549

    PubMed  PubMed Central  Google Scholar 

  31. Lopes MB, Araujo LQ, Passos MT et al (2013) Estimation of glomerular filtration rate from serum creatinine and cystatin C in octogenarians and nonagenarians. BMC Nephrol 14:265

    Article  PubMed  PubMed Central  Google Scholar 

  32. Koppe L, Klich A, Dubourg L et al (2013) Performance of creatinine-based equations compared in older patients. J Nephrol 26:716–723

    Article  CAS  PubMed  Google Scholar 

  33. Finney H, Newman DJ, Thakkar H et al (2000) Reference ranges for plasma cystatin C and creatinine measurements in premature infants, neonates, and older children. Arch Dis Child 82:71–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Norlund L, Fex G, Lanke J et al (1997) Reference intervals for the glomerular filtration rate and cell-proliferation markers: serum cystatin C and serum beta 2-microglobulin/cystatin C-ratio. Scand J Clin Lab Invest 57:463–470

    Article  CAS  PubMed  Google Scholar 

  35. Tangri N, Stevens LA, Schmid CH et al (2011) Changes in dietary protein intake has no effect on serum cystatin C levels independent of the glomerular filtration rate. Kidney Int 79:471–477

    Article  CAS  PubMed  Google Scholar 

  36. Vinge E, Lindergard B, Nilsson-Ehle P et al (1999) Relationships among serum cystatin C, serum creatinine, lean tissue mass and glomerular filtration rate in healthy adults. Scand J Clin Lab Invest 59:587–592

    Article  CAS  PubMed  Google Scholar 

  37. Stevens LA, Schmid CH, Greene T et al (2009) Factors other than glomerular filtration rate affect serum cystatin C levels. Kidney Int 75:652–660

    Article  CAS  PubMed  Google Scholar 

  38. Knight EL, Verhave JC, Spiegelman D et al (2004) Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int 65:1416–1421

    Article  CAS  PubMed  Google Scholar 

  39. Pei X, Liu Q, He J et al (2012) Are cystatin C-based equations superior to creatinine-based equations for estimating GFR in Chinese elderly population. Int Urol Nephrol 44:1877–1884

    Article  CAS  PubMed  Google Scholar 

  40. Fan L, Levey AS, Gudnason V et al (2015) Comparing GFR estimating equations using cystatin C and creatinine in elderly individuals. J Am Soc Nephrol 26:1982–1989

    Article  CAS  PubMed  Google Scholar 

  41. Van Pottelbergh G, Vaes B, Adriaensen W et al (2014) The glomerular filtration rate estimated by new and old equations as a predictor of important outcomes in elderly patients. BMC Med 12:27

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu Junzhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Changjie, G., Xusheng, Z., Feng, H. et al. Evaluation of glomerular filtration rate by different equations in Chinese elderly with chronic kidney disease. Int Urol Nephrol 49, 133–141 (2017). https://doi.org/10.1007/s11255-016-1359-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-016-1359-z

Keywords

Navigation