Skip to main content

Advertisement

Log in

The association between lipid metabolism gene polymorphisms and nephropathy in type 2 diabetes: a meta-analysis

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

Hyperlipidaemia has been identified as a risk factor for diabetic nephropathy via exacerbation of glomerular injury through the activation of multiple signaling pathways. This study’s aim is to assess the associations between polymorphisms of genes involved in lipid metabolism, such as apolipoprotein E (ApoE), peroxisome proliferator-activated receptor γ (PPARγ), acetyl-CoA carboxylase β (ACACB), and type 2 diabetic nephropathy (T2DN).

Methods

A search of the MEDLINE and Web of Science databases was used to identify relevant studies, and allele or genotype frequencies were pooled using fixed- or random-effects models.

Results

Forty-five studies were included in this meta-analysis, consisting of 10,920 type 2 diabetic patients with nephropathy and 16,203 type 2 diabetic patients without nephropathy. The OR for ApoE ε2 versus ε3 was 1.49 (95 % CI 1.13–1.95) in T2DN. The progression of T2DN was related to the presence of the ε2 allele and ε2 carrier with ORs of 1.72 (95 % CI 1.10–2.69) and 1.78 (95 % CI 1.18–2.69), respectively. The rs1801282 C>G variant in PPARγ presented a significant association with decreased T2DN risk, both in the G allele and GC/GG genotype with ORs of 0.77 (95 % CI 0.68–0.87) and 0.79 (95 % CI 0.69–0.92), respectively. The T allele in rs2268388 within ACACB showed an increased risk for T2DN, exhibiting an OR of 1.35 (95 % CI 1.12–1.63).

Conclusions

Our meta-analysis supports that the ApoE ε2 allele and ACACB rs2268388 C>T might act as promotion factors of nephropathy in type 2 diabetes, whereas PPARγ rs1801282 C>G is a promising candidate genetic variation for reducing susceptibility to T2DN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Macisaac RJ, Ekinci EI, Jerums G (2014) Markers of and risk factors for the development and progression of diabetic kidney disease. Am J Kidney Dis 63(2 Suppl 2):S39–S62

    Article  PubMed  Google Scholar 

  2. Ng MC, Baum L, So WY, Lam VK, Wang Y, Poon E, Tomlinson B, Cheng S, Lindpaintner K, Chan JC (2006) Association of lipoprotein lipase S447X, apolipoprotein E exon 4, and apoC3-455T>C polymorphisms on the susceptibility to diabetic nephropathy. Clin Genet 70(1):20–28

    Article  CAS  PubMed  Google Scholar 

  3. Shah VN, Cheema BS, Sharma R, Khullar M, Kohli HS, Ahluwalia TS, Mohan V, Bhansali A (2013) ACACbeta gene (rs2268388) and AGTR1 gene (rs5186) polymorphism and the risk of nephropathy in Asian Indian patients with type 2 diabetes. Mol Cell Biochem 372(1–2):191–198

    Article  CAS  PubMed  Google Scholar 

  4. Wu LS, Hsieh CH, Pei D, Hung YJ, Kuo SW, Lin E (2009) Association and interaction analyses of genetic variants in ADIPOQ, ENPP1, GHSR, PPARgamma and TCF7L2 genes for diabetic nephropathy in a Taiwanese population with type 2 diabetes. Nephrol Dial Transplant 24(11):3360–3366

    Article  CAS  PubMed  Google Scholar 

  5. Ganan A, Corella D, Guillen M, Ordovas JM, Pocovi M (2004) Frequencies of apolipoprotein A4 gene polymorphisms and association with serum lipid concentrations in two healthy Spanish populations. Hum Biol 76(2):253–266

    Article  CAS  PubMed  Google Scholar 

  6. Ha SK, Park HS, Kim KW, Kim SJ, Kim DH, Kim JH, Lee HY, Han DS (1999) Association between apolipoprotein E polymorphism and macroalbuminuria in patients with non-insulin dependent diabetes mellitus. Nephrol Dial Transplant 14(9):2144–2149

    Article  CAS  PubMed  Google Scholar 

  7. Hsu CC, Kao WH, Coresh J, Pankow JS, Marsh-Manzi J, Boerwinkle E, Bray MS (2005) Apolipoprotein E and progression of chronic kidney disease. JAMA 293(23):2892–2899

    Article  CAS  PubMed  Google Scholar 

  8. Liu L, Xiang K, Zheng T, Zhang R, Li M, Li J (2003) Co-inheritance of specific genotypes of HSPG and ApoE gene increases risk of type 2 diabetic nephropathy. Mol Cell Biochem 254(1–2):353–358

    Article  CAS  PubMed  Google Scholar 

  9. Guan J, Zhao HL, Baum L, Sui Y, He L, Wong H, Lai FM, Tong PC, Chan JC (2009) Apolipoprotein E polymorphism and expression in type 2 diabetic patients with nephropathy: clinicopathological correlation. Nephrol Dial Transplant 24(6):1889–1895

    Article  CAS  PubMed  Google Scholar 

  10. Kwon MK, Rhee SY, Chon S, Oh S, Woo JT, Kim SW, Kim JW, Kim YS, Jeong KH, Lee SH, Lee TW, Ihm CG (2007) Association between apolipoprotein E genetic polymorphism and the development of diabetic nephropathy in type 2 diabetic patients. Diabetes Res Clin Pract 77(Suppl 1):S228–S232

    Article  CAS  PubMed  Google Scholar 

  11. Leiva E, Mujica V, Elematore I, Orrego R, Diaz G, Prieto M, Arredondo M (2007) Relationship between Apolipoprotein E polymorphism and nephropathy in type-2 diabetic patients. Diabetes Res Clin Pract 78(2):196–201

    Article  CAS  PubMed  Google Scholar 

  12. Erdogan M, Eroglu Z, Biray C, Karadeniz M, Cetinkalp S, Kosova B, Gunduz C, Topcuoglu N, Ozgen G, Yilmaz C (2009) The relationship of the apolipoprotein E gene polymorphism Turkish Type 2 diabetic patients with and without nephropathy. J Endocrinol Invest 32(3):219–222

    Article  CAS  PubMed  Google Scholar 

  13. Ma SW, Benzie IF, Yeung VT (2008) Type 2 diabetes mellitus and its renal complications in relation to apolipoprotein E gene polymorphism. Transl Res 152(3):134–142

    Article  CAS  PubMed  Google Scholar 

  14. Tien KJ, Tu ST, Chou CW, Yang CY, Hsiao JY, Shin SJ, Chen HC, Hsieh MC (2011) Apolipoprotein E polymorphism and the progression of diabetic nephropathy in type 2 diabetes. Am J Nephrol 33(3):231–238

    Article  CAS  PubMed  Google Scholar 

  15. Willson TM, Lambert MH, Kliewer SA (2001) Peroxisome proliferator-activated receptor gamma and metabolic disease. Annu Rev Biochem 70:341–367

    Article  CAS  PubMed  Google Scholar 

  16. Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, Nemesh J, Lane CR, Schaffner SF, Bolk S, Brewer C, Tuomi T, Gaudet D, Hudson TJ, Daly M, Groop L, Lander ES (2000) The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 26(1):76–80

    Article  CAS  PubMed  Google Scholar 

  17. Herrmann SM, Ringel J, Wang JG, Staessen JA, Brand E (2002) Peroxisome proliferator-activated receptor-gamma2 polymorphism Pro12Ala is associated with nephropathy in type 2 diabetes: the Berlin Diabetes Mellitus (BeDiaM) Study. Diabetes 51(8):2653–2657

    Article  CAS  PubMed  Google Scholar 

  18. Caramori ML, Canani LH, Costa LA, Gross JL (2003) The human peroxisome proliferator-activated receptor gamma2 (PPARgamma2) Pro12Ala polymorphism is associated with decreased risk of diabetic nephropathy in patients with type 2 diabetes. Diabetes 52(12):3010–3013

    Article  CAS  PubMed  Google Scholar 

  19. Liu L, Zheng T, Wang F, Wang N, Song Y, Li M, Li L, Jiang J, Zhao W (2010) Pro12Ala polymorphism in the PPARG gene contributes to the development of diabetic nephropathy in Chinese type 2 diabetic patients. Diabetes Care 33(1):144–149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. De Cosmo S, Prudente S, Lamacchia O, Lapice E, Morini E, Di Paola R, Copetti M, Ruggenenti P, Remuzzi G, Vaccaro O, Cignarelli M, Trischitta V (2011) PPARgamma2 P12A polymorphism and albuminuria in patients with type 2 diabetes: a meta-analysis of case-control studies. Nephrol Dial Transplant 26(12):4011–4016

    Article  PubMed  Google Scholar 

  21. Stefanski A, Majkowska L, Ciechanowicz A, Frankow M, Safranow K, Parczewski M, Pilarska K (2006) Lack of association between the Pro12Ala polymorphism in PPAR-gamma2 gene and body weight changes, insulin resistance and chronic diabetic complications in obese patients with type 2 diabetes. Arch Med Res 37(6):736–743

    Article  CAS  PubMed  Google Scholar 

  22. Erdogan M, Karadeniz M, Eroglu Z, Tezcanli B, Selvi N, Yilmaz C (2007) The relationship of the peroxisome proliferator-activated receptor-gamma 2 exon 2 and exon 6 gene polymorphism in Turkish type 2 diabetic patients with and without nephropathy. Diabetes Res Clin Pract 78(3):355–359

    Article  CAS  PubMed  Google Scholar 

  23. Bhaskar LV, Mahin S, Ginila RT, Soundararajan P (2013) Role of the ACE ID and PPARG P12A polymorphisms in genetic susceptibility of diabetic nephropathy in a south indian population. Nephrourol Mon 5(3):813–817

    Article  PubMed Central  PubMed  Google Scholar 

  24. Ma L, Mondal AK, Murea M, Sharma NK, Tonjes A, Langberg KA, Das SK, Franks PW, Kovacs P, Antinozzi PA, Stumvoll M, Parks JS, Elbein SC, Freedman BI (2011) The effect of ACACB cis-variants on gene expression and metabolic traits. PLoS ONE 6(8):e23860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Maeda S, Kobayashi MA, Araki S, Babazono T, Freedman BI, Bostrom MA, Cooke JN, Toyoda M, Umezono T, Tarnow L, Hansen T, Gaede P, Jorsal A, Ng DP, Ikeda M, Yanagimoto T, Tsunoda T, Unoki H, Kawai K, Imanishi M, Suzuki D, Shin HD, Park KS, Kashiwagi A, Iwamoto Y, Kaku K, Kawamori R, Parving HH, Bowden DW, Pedersen O, Nakamura Y (2010) A single nucleotide polymorphism within the acetyl-coenzyme A carboxylase beta gene is associated with proteinuria in patients with type 2 diabetes. PLoS Genet 6(2):e1000842

    Article  PubMed Central  PubMed  Google Scholar 

  26. Tang SC, Leung VT, Chan LY, Wong SS, Chu DW, Leung JC, Ho YW, Lai KN, Ma L, Elbein SC, Bowden DW, Hicks PJ, Comeau ME, Langefeld CD, Freedman BI (2010) The acetyl-coenzyme A carboxylase beta (ACACB) gene is associated with nephropathy in Chinese patients with type 2 diabetes. Nephrol Dial Transplant 25(12):3931–3934

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25(9):603–605

    Article  PubMed  Google Scholar 

  28. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560

    Article  PubMed Central  PubMed  Google Scholar 

  29. Wigginton JE, Cutler DJ, Abecasis GR (2005) A note on exact tests of Hardy-Weinberg equilibrium. Am J Hum Genet 76(5):887–893

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50(4):1088–1101

    Article  CAS  PubMed  Google Scholar 

  31. Araki S, Koya D, Makiishi T, Sugimoto T, Isono M, Kikkawa R, Kashiwagi A, Haneda M (2003) APOE polymorphism and the progression of diabetic nephropathy in Japanese subjects with type 2 diabetes: results of a prospective observational follow-up study. Diabetes Care 26(8):2416–2420

    Article  CAS  PubMed  Google Scholar 

  32. Reis KA, Ebinc FA, Koc E, Demirci H, Erten Y, Guz G, Derici UB, Bali M, Soylemezoglu O, Arinsoy T, Sindel S (2011) Association of the angiotensinogen M235T and APO E gene polymorphisms in Turkish type 2 diabetic patients with and without nephropathy. Ren Fail 33(5):469–474

    Article  CAS  PubMed  Google Scholar 

  33. Ilhan N, Kahraman N, Seckin D, Colak R (2007) Apo E gene polymorphism on development of diabetic nephropathy. Cell Biochem Funct 25(5):527–532

    Article  CAS  PubMed  Google Scholar 

  34. Hsieh MC, Lin SR, Yang YC, Chen HC, Lin JN, Shin SJ (2002) Higher frequency of apolipoprotein E2 allele in type 2 diabetic patients with nephropathy in Taiwan. J Nephrol 15(4):368–373

    CAS  PubMed  Google Scholar 

  35. Akarsu E, Pirim I, Capoglu I, Kaya H, Akcak G, Unuvar N (2001) A relation between the apolipoprotein E genotypes and microalbuminuria in type 2 diabetes mellitus. Turk J Med Sci 31:59–64

    CAS  Google Scholar 

  36. Kimura H, Suzuki Y, Gejyo F, Karasawa R, Miyazaki R, Suzuki S, Arakawa M (1998) Apolipoprotein E4 reduces risk of diabetic nephropathy in patients with NIDDM. Am J Kidney Dis 31(4):666–673

    Article  CAS  PubMed  Google Scholar 

  37. Eto M, Horita K, Morikawa A, Nakata H, Okada M, Saito M, Nomura M, Abiko A, Iwashima Y, Ikoda A et al (1995) Increased frequency of apolipoprotein epsilon 2 allele in non-insulin dependent diabetic (NIDDM) patients with nephropathy. Clin Genet 48(6):288–292

    Article  CAS  PubMed  Google Scholar 

  38. Zhang H, Zhu S, Chen J, Tang Y, Hu H, Mohan V, Venkatesan R, Wang J, Chen H (2012) Peroxisome proliferator–activated receptor gamma polymorphism Pro12Ala is associated with nephropathy in type 2 diabetes: evidence from meta-analysis of 18 studies. Diabetes Care 35(6):1388–1393

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Lapice E, Pinelli M, Riccardi G, Vaccaro O (2010) Pro12Ala polymorphism in the PPARG gene contributes to the development of diabetic nephropathy in Chinese type 2 diabetic patients: comment on the study by Liu et al. Diabetes Care 33 (8):e114; author reply e115

  40. De Cosmo S, Motterlini N, Prudente S, Pellegrini F, Trevisan R, Bossi A, Remuzzi G, Trischitta V, Ruggenenti P (2009) Impact of the PPAR-gamma2 Pro12Ala polymorphism and ACE inhibitor therapy on new-onset microalbuminuria in type 2 diabetes: evidence from BENEDICT. Diabetes 58(12):2920–2929

    Article  PubMed Central  PubMed  Google Scholar 

  41. Pollex RL, Mamakeesick M, Zinman B, Harris SB, Hegele RA, Hanley AJ (2007) Peroxisome proliferator-activated receptor gamma polymorphism Pro12Ala is associated with nephropathy in type 2 diabetes. J Diabetes Complications 21(3):166–171

    Article  PubMed  Google Scholar 

  42. Mori H, Ikegami H, Kawaguchi Y, Seino S, Yokoi N, Takeda J, Inoue I, Seino Y, Yasuda K, Hanafusa T, Yamagata K, Awata T, Kadowaki T, Hara K, Yamada N, Gotoda T, Iwasaki N, Iwamoto Y, Sanke T, Nanjo K, Oka Y, Matsutani A, Maeda E, Kasuga M (2001) The Pro12 –>Ala substitution in PPAR-gamma is associated with resistance to development of diabetes in the general population: possible involvement in impairment of insulin secretion in individuals with type 2 diabetes. Diabetes 50(4):891–894

    Article  CAS  PubMed  Google Scholar 

  43. Horita K, Eto M, Makino I (1994) Apolipoprotein E2, renal failure and lipid abnormalities in non-insulin-dependent diabetes mellitus. Atherosclerosis 107(2):203–211

    Article  CAS  PubMed  Google Scholar 

  44. Maeda A, Gohda T, Funabiki K, Horikoshi S, Tomino Y (2004) Peroxisome proliferator-activated receptor gamma gene polymorphism is associated with serum triglyceride levels and body mass index in Japanese type 2 diabetic patients. J Clin Lab Anal 18(6):317–321

    Article  CAS  PubMed  Google Scholar 

  45. Buzello M, Tornig J, Faulhaber J, Ehmke H, Ritz E, Amann K (2003) The apolipoprotein e knockout mouse: a model documenting accelerated atherogenesis in uremia. J Am Soc Nephrol 14(2):311–316

    Article  CAS  PubMed  Google Scholar 

  46. Li Y, Tang K, Zhang Z, Zhang M, Zeng Z, He Z, He L, Wan C (2011) Genetic diversity of the apolipoprotein E gene and diabetic nephropathy: a meta-analysis. Mol Biol Rep 38(5):3243–3252

    Article  CAS  PubMed  Google Scholar 

  47. Mooyaart AL, Valk EJ, van Es LA, Bruijn JA, de Heer E, Freedman BI, Dekkers OM, Baelde HJ (2011) Genetic associations in diabetic nephropathy: a meta-analysis. Diabetologia 54(3):544–553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Deeb SS, Fajas L, Nemoto M, Pihlajamaki J, Mykkanen L, Kuusisto J, Laakso M, Fujimoto W, Auwerx J (1998) A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet 20(3):284–287

    Article  CAS  PubMed  Google Scholar 

  49. Jia Z, Sun Y, Yang G, Zhang A, Huang S, Heiney KM, Zhang Y (2014) New Insights into the PPAR Agonists for the treatment of diabetic nephropathy. PPAR Res 2014:818530

    PubMed Central  PubMed  Google Scholar 

  50. Wahba IM, Mak RH (2007) Obesity and obesity-initiated metabolic syndrome: mechanistic links to chronic kidney disease. Clin J Am Soc Nephrol 2(3):550–562

    Article  CAS  PubMed  Google Scholar 

  51. Jiang T, Wang Z, Proctor G, Moskowitz S, Liebman SE, Rogers T, Lucia MS, Li J, Levi M (2005) Diet-induced obesity in C57BL/6 J mice causes increased renal lipid accumulation and glomerulosclerosis via a sterol regulatory element-binding protein-1c-dependent pathway. J Biol Chem 280(37):32317–32325

    Article  CAS  PubMed  Google Scholar 

  52. Wang Z, Jiang T, Li J, Proctor G, McManaman JL, Lucia S, Chua S, Levi M (2005) Regulation of renal lipid metabolism, lipid accumulation, and glomerulosclerosis in FVBdb/db mice with type 2 diabetes. Diabetes 54(8):2328–2335

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaofa Nie or Li Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11255_2014_843_MOESM1_ESM.tif

Begg’s funnel plots of the association between ApoE ε2/ε3/ε4 polymorphism and T2DN risk. a. ε2 vs. ε3; b. ε2 carrier vs. ε3 carrier; c. ε4 vs. ε3; d. ε4 carrier vs. ε3 carrier. The horizontal line is drawn at the pooled log OR. Diagonal lines indicate the pseudo 95 % confidence interval (CI) (TIFF 203 kb)

11255_2014_843_MOESM2_ESM.tif

Begg’s funnel plots of the association between ApoE ε2/ε3/ε4 polymorphism and T2DN progression. a. ε2 vs. ε3; b. ε2 carrier vs. ε3 carrier; c. ε4 vs. ε3; d. ε4 carrier vs. ε3 carrier. The horizontal line is drawn at the pooled log OR. Diagonal lines indicate the pseudo 95 % CI (TIFF 217 kb)

11255_2014_843_MOESM3_ESM.tif

Begg’s funnel plots of the association between PPARγ C>G polymorphism and T2DN risk. a. G allele vs. C allele; b. CG+GG genotype vs. CC genotype. The horizontal line is drawn at the pooled log OR. Diagonal lines indicate the pseudo 95 % CI (TIFF 166 kb)

11255_2014_843_MOESM4_ESM.tif

Begg’s funnel plots of the association between ACACB C>T polymorphism and T2DN risk. a. T allele vs. C allele; b. CT+TT genotype vs. CC genotype. The horizontal line is drawn at the pooled log OR. Diagonal lines indicate the pseudo 95 % CI (TIFF 140 kb)

11255_2014_843_MOESM5_ESM.tif

Sensitivity analysis for the association between ApoE ε2/ε3/ε4 polymorphism and T2DN risk. a. ε2 vs. ε3; b. ε2 carrier vs. ε3 carrier; c. ε4 vs. ε3; d. ε4 carrier vs. ε3 carrier (TIFF 389 kb)

11255_2014_843_MOESM6_ESM.tif

Sensitivity analysis for the association between ApoE ε2/ε3/ε4 polymorphism and progression of T2DN. a. ε2 vs. ε3; b. ε2 carrier vs. ε3 carrier; c. ε4 vs. ε3; d. ε4 carrier vs. ε3 carrier (TIFF 193 kb)

11255_2014_843_MOESM7_ESM.tif

Sensitivity analysis for the association between PPARγ C>G polymorphism and T2DN risk. a. G allele vs. C allele; b. CG+GG genotype vs. CC genotype (TIFF 309 kb)

11255_2014_843_MOESM8_ESM.tif

Sensitivity analysis for the association between ACACB C>T polymorphism and T2DN risk. a. T allele vs. C allele; b. CT+TT genotype vs. CC genotype (TIFF 248 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Shi, Y., Yin, J. et al. The association between lipid metabolism gene polymorphisms and nephropathy in type 2 diabetes: a meta-analysis. Int Urol Nephrol 47, 117–130 (2015). https://doi.org/10.1007/s11255-014-0843-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-014-0843-6

Keywords

Navigation