Skip to main content
Log in

Some Commutativity Criteria for Prime Rings with Involution Involving Symmetric and Skew Symmetric Elements

  • Published:
Ukrainian Mathematical Journal Aims and scope

We study the Posner second theorem [Proc. Amer. Math. Soc., 8, 1093–1100 (1957)] and strong commutativity preserving problem for symmetric and skew symmetric elements involving generalized derivations on prime rings with involution. The obtained results cover numerous known theorems. We also provide examples showing that the obtained results hold neither in the case of involution of the first kind, nor in the case where the ring is not prime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Alahmadi, H. Alhazmi, S. Ali, N. A. Dar, and A. N. Khan, “Additive maps on prime and semiprime rings with involution,” Hacet. J. Math. Stat., 49, No. 3, 1126–1133 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Ali and N. A. Dar, “On *-centralizing mappings in rings with involution,” Georgian Math. J., 21, No. 1, 25–28 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Ali, N. A. Dar, and A. N. Khan, “On strong commutativity preserving like maps in rings with involution,” Miskolc Math. Notes, 16, No. 1, 17–24 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  4. H. E. Bell and M. N. Daif, “On commutativity and strong commutativity preserving maps,” Canad. Math. Bull., 37, 443–447 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  5. H. E. Bell and M. N. Daif, “On derivations and commutativity in prime rings,” Acta Math. Hungar., 66, 337–343 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  6. H. E. Bell and W. S. Martindale III, “Centralizing mappings of semiprime rings,” Canad. Math. Bull., 30, No. 1, 92–101 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  7. H. E. Bell and G. Mason, “On derivations in near rings and rings,” Math. J. Okayama Univ., 34, 135–144 (1992).

    MathSciNet  MATH  Google Scholar 

  8. M. Brešar, “On the distance of the composition of two derivations to the generalized derivations,” Glasgow Math. J., 33, 89–93 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Brešar, “Commuting traces of biadditive mappings, commutativity preserving mappings, and Lie mappings,” Trans. Amer. Math. Soc., 335, 525–546 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Brešar and C. R. Miers, “Strong commutativity preserving mappings of semiprime rings,” Canad. Math. Bull., 37, 457–460 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  11. N. A. Dar and N. A. Khan, “Generalized derivations in rings with involution,” Algebra Colloq., 24, No. 3, 393–399 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  12. Q. Deng and M. Ashraf, “On strong commutativity preserving maps,” Results Math., 30, 259–263 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  13. T. K. Lee and T. L. Wong, “Nonadditive strong commutativity preserving maps,” Comm. Algebra, 40, 2213–2218 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  14. P. K. Liau and C. K. Liu, “Strong commutativity preserving generalized derivations on Lie ideals,” Lin. Multilin. Algebra, 59, 905–915 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  15. J. S. Lin and C. K. Liu, “Strong commutativity preserving maps on Lie ideals,” Lin. Algebra Appl., 428, 1601–1609 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  16. J. S. Lin and C. K. Liu, “Strong commutativity preserving maps in prime rings with involution,” Lin. Algebra Appl., 432, 14–23 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  17. C. K. Liu, “Strong commutativity preserving generalized derivations on right ideals,” Monatsh. Math., 166, 453–465 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Ma, X. W. Xu, and F. W. Niu, “Strong commutativity preserving generalized derivations on semiprime rings,” Acta Math. Sin. (Engl. Ser.), 24, 1835–1842 (2008).

  19. B. Nejjar, A. Kacha, A. Mamouni, and L. Oukhtite, “Commutativity theorems in rings with involution,” Comm. Algebra, 45, No. 2, 698–708 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  20. E. C. Posner, “Derivations in prime rings,” Proc. Amer. Math. Soc., 8, 1093–1100 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  21. X. Qi and J. Hou, “Strong commutativity preserving maps on triangular rings,” Oper. Matrices, 6, 147–158 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Semrl, “Commutativity preserving maps,” Lin. Algebra Appl., 429, 1051–1070 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  23. O. A. Zemzami, L. Oukhtite, S. Ali, and N. Muthana, “On certain classes of generalized derivations,” Math. Slovaca, 69, No. 5, 1023–1032 (2019).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ali.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, No. 4, pp. 455–466, April, 2023. Ukrainian DOI: https://doi.org/10.37863/umzh.v75i4.6751.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dar, N.A., Ali, S., Abbasi, A. et al. Some Commutativity Criteria for Prime Rings with Involution Involving Symmetric and Skew Symmetric Elements. Ukr Math J 75, 519–534 (2023). https://doi.org/10.1007/s11253-023-02214-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-023-02214-6

Navigation