Skip to main content
Log in

Existence of a Weak Solution for a Class of Nonlinear Elliptic Equations on the Sierpiński Gasket

  • Published:
Ukrainian Mathematical Journal Aims and scope

We study the existence of a weak (strong) solution of a nonlinear elliptic problem

\(\begin{array}{c}-\Delta u-\lambda u{g}_{1}+h\left(u\right){g}_{2}=f\mathrm{ in }V/{V}_{0},\\ u=0\mathrm{ on }{V}_{0},\end{array}\)

where V is a Sierpiński gasket in ℝN−1, N ≥ 2, V0 is its boundary (consisting of N its corners), and λ is a real parameter. Here, f, g1, g2: V → ℝ and h : ℝ → ℝ are functions satisfying suitable hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ambrosetti and P. Rabinowitz, “Dual variational methods in critical point theory and applications,” J. Funct. Anal., 14, 349–381 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  2. M. T. Barlow and R. F. Bass, “Transition densities for Brownian motion on the Sierpiński carpet,” Probab. Theory Related Fields, 91, 307–330 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  3. M. T. Barlow and R. F. Bass, “Brownian motion and harmonic analysis on Sierpiński carpet,” Canad. J. Math., 51, 673–744 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  4. G. M. Bisci and V. Rădulescu, “A characterization for elliptic problems on fractal sets,” Proc. Amer. Math. Soc., 143, 2959–2968 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  5. G. M. Bisci, D. Repovš, and R. Servadei, “Nonlinear problems on the Sierpi´nski gasket,” J. Math. Anal. Appl., 452, 883–895 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  6. B. E. Breckner, “Real-valued functions of finite energy on the Sierpiński gasket,” Mathematica, 55(78), 142–158 (2013).

    MathSciNet  MATH  Google Scholar 

  7. B. E. Breckner, “A short note on harmonic functions and zero divisors on the Sierpiński fractal,” Arch. Math. (Basel), 106, 183–188 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  8. B. E. Breckner, V. Rădulescu, and C. Varga, “Infinitely many solutions for the Dirichlet problem on the Sierpiński gasket,” Anal. Appl. (Singap.), 9, 235–248 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  9. B. E. Breckner, D. Repovš, and C. Varga, “On the existence of three solutions for the Dirichlet problem on the Sierpiński gasket,” Nonlin. Anal., 73, 2980–2990 (2010).

    Article  MATH  Google Scholar 

  10. B. E. Breckner and C. Varga, “A note on gradient-type systems on fractals,” Nonlin. Anal. Real World Appl., 21, 142–152 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  11. B. E. Breckner and C. Varga, “Multiple solutions of Dirichlet problems on the Sierpiński gasket,” J. Optim. Theory Appl., 167, 842–861 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Hess, “On the Fredholm alternative for nonlinear functional equations in Banach spaces,” Proc. Amer. Math. Soc., 33, 55–61 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  13. K. J. Falconer, “Semilinear PDEs on self-similar fractals,” Comm. Math. Phys., 206, 235–245 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  14. K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications, 2nd ed., John Wiley & Sons (2003).

  15. K. J. Falconer and J. Hu, “Nonlinear elliptic equations on the Sierpiński gasket,” J. Math. Anal. Appl., 240, 552–573 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  16. F. Faraci and A. Kristály, “One-dimensional scalar field equations involving an oscillatory nonlinear term,” Discrete Contin. Dyn. Syst., 18, No. 1, 107–120 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Fukushima and T. Shima, “On a spectral analysis for the Sierpiński gasket,” Potential Anal., 1, 1–35 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  18. Z. He, “Sublinear elliptic equation on fractal domains,” J. Partial Differ. Equat., 24, 97–113 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Hu, “Multiple solutions for a class of nonlinear elliptic equations on the Sierpiński gasket,” Sci. China Ser. A, 47, 772–786 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Kigami, “Harmonic calculus on p.c.f. self-similar sets,” Trans. Amer. Math. Soc., 335, 721–755 (1993).

    MathSciNet  MATH  Google Scholar 

  21. S. M. Kozlov, “Harmonization and homogenization on fractals,” Comm. Math. Phys., 153, 339–357 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  22. M. A. Krasnosel’skii, Topological Methods in the Theory of Nonlinear Integral Equations, GITTL, Moscow (1956).

  23. A. Kufner, O. John, and S. Fučik, Functions Spaces, Noordhoff, Leyden (1977).

    MATH  Google Scholar 

  24. P. H. Rabinowitz, “Minimax methods in critical point theory with applications to differential equations,” CBMS Regional Conference Series in Mathematics, vol. 65, American Mathematical Society, Providence, RI (1986).

  25. V. Raghavendra and R. Kar, “Existence of a weak solution for a class of fractional Laplacian equation,” J. Austral. Math. Soc., 102, No. 3, 392–404 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  26. B. Ricceri, “On a classical existence theorem for nonlinear elliptic equations,” M. Théra (Ed.), Experimental, Constructive and Nonlinear Analysis, CMS Conf. Proc., vol. 27, Canad. Math. Soc. (2000), p. 275–278.

  27. R. S. Strichartz, “Some properties of Laplacian on fractals,” J. Funct. Anal., 164, 181–208 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  28. R. S. Strichartz, “Solvability for differential equations on fractals,” J. Anal. Math., 96, 247–267 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, Heidelberg (1990).

  30. E. Zeidler, Nonlinear Functional Analysis and Its Applications, Pt II/A, Springer-Verlag, New York (1990).

  31. E. Zeidler, Nonlinear Functional Analysis and Its Applications, Pt II/B, Springer-Verlag, New York (1990).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kar.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, No. 10, pp. 1317–1327, October, 2022. Ukrainian DOI: https://doi.org/10.37863/umzh.v74i10.6248.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badajena, A.K., Kar, R. Existence of a Weak Solution for a Class of Nonlinear Elliptic Equations on the Sierpiński Gasket. Ukr Math J 74, 1500–1512 (2023). https://doi.org/10.1007/s11253-023-02151-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-023-02151-4

Navigation