Skip to main content
Log in

Interpolated Estimate for Copositive Approximations by Algebraic Polynomials

  • Published:
Ukrainian Mathematical Journal Aims and scope

Under the condition that a function f continuous on [1, 1], changes its sign at s points yi, − 1 < ys < ys − 1 < …y1 < 1, for each n ∈ ℕ greater than some constant N that depends only on

$$ \underset{i=0,\dots, s}{\min}\left\{{y}_i-{y}_i+1\right\},\kern0.5em {y}_{s+1}:= -1,\kern0.5em {y}_0:= 1, $$

we construct an algebraic polynomial Pn of degree ≤ n such that Pn has the same sign as f on [1, 1]. In particular, Pn(yi) = 0, i = 1, …, s, and \( \left|f(x)-{P}_n(x)\right|\le c(s){\omega}_2\left(f,\sqrt{1-{x}^2}/n\right),x\in \left[-1,1\right], \) where c(s) is a constant that depends only on s and ω2(f, ⋅) is the modulus of smoothness of the second order for the function f. Note that this estimate was established by DeVore for the unconstrained approximation. It is interpolating at ±1 and it is impossible to replace ω2 with ωk, k > 2, even for the unconstrained approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. K. Dzyadyk, Introduction to the Theory of Uniform Approximation of Functions by Polynomials [in Russian], Nauka, Moscow (1977).

  2. S. A. Telyakovskii, “Two theorems on the approximations of functions by algebraic polynomials,” Mat. Sb., 70 (112), No. 2, 252–265 (1966).

  3. R. A. DeVore, “Degree of approximation. Approximation theory, II,” in: Proc. Internat. Symp., Univ. Texas, Austin, TX., 1976, Academic Press, New York (1976), pp. 117–161.

  4. X. M. Yu, “Pointwise estimates for convex polynomial approximation,” Approx. Theory Appl., 1, No. 4, 65–74 (1985).

    MathSciNet  MATH  Google Scholar 

  5. H. H. Gonska, D. Leviatan, I. A. Shevchuk, and H.-J. Wenz, “Interpolatory pointwise estimates for polynomial approximation,” Constr. Approx., 16, 603–629 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  6. K. A. Kopotun, “Copositive approximation by algebraic polynomials,” Anal. Math., 21, Issue 4, 269–283 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  7. Y. Hu and X. M. Yu, “The degree of copositive approximation and a computer algorithm,” SIAM J. Numer. Anal., 33, Issue 1, 388–398 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  8. Y. Hu, D. Leviatan, and X. M. Yu, “Copositive polynomial approximation in C[0, 1],J. Anal., 1, 85–90 (1993).

    MathSciNet  MATH  Google Scholar 

  9. S. P. Zhou, “A counterexample in copositive approximation,” Israel J. Math., 78, 75–83 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  10. S. P. Zhou, “On copositive approximation,” Approxim. Theory Appl., 9, Issue 2, 104–110 (1993).

    MathSciNet  MATH  Google Scholar 

  11. G. A. Dzyubenko, “Comonotone approximation with interpolation at the ends of an interval,” Anal. Theory Appl., 22, No. 3, 233–245 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  12. G. A. Dzyubenko J. Gilewicz, and I. A. Shevchuk, “Coconvex pointwise approximation,” Ukr. Mat. Zh., 54, No. 9, 1200–1212 (2002); English translation: Ukr. Math. J., 52, No. 9, 1445–1461 (2002).

  13. H. Whitney, “On functions with bounded n-th differences,” J. Math. Pures Appl., 36, No. 9, 67–95 (1957).

    MathSciNet  MATH  Google Scholar 

  14. J. Gilewicz, Yu. V. Kryakin, and I. A. Shevchuk, “Boundedness by 3 of the Whitney interpolation constant,” J. Approx. Theory, 119, 271–290 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Marchaud, “Sur les dérivées et sur les différences des fonctions de variables réelles,” J. Math. Pures Appl., 6, 337–426 (1927).

    MATH  Google Scholar 

  16. I. A. Shevchuk, “Approximation of monotone functions by monotone polynomials,” Mat. Sb., 183, No. 5, 63–78 (1992).

    MATH  Google Scholar 

  17. I. A. Shevchuk, Approximation by Polynomials and Traces of Functions Continuous on a Segment [in Russian], Naukova Dumka, Kiev (1992).

  18. G. A. Dzyubenko, J. Gilewicz, and I. A. Shevchuk, “Piecewise monotone pointwise approximation,” Constr. Approx., 14, 311–348 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  19. K. A. Kopotun, “Pointwise and uniform estimates for convex approximation of functions by algebraic polynomials,” Constr. Approx., 10, No. 2, 153–178 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Leviatan and I. A. Shevchuk, “Coconvex approximation,” J. Approx. Theory, 118, 20–65 (2002).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Dzyubenko.

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, No. 4, pp. 496–506, April, 2022. Ukrainian DOI: https://doi.org/10.37863/umzh.v74i4.7103.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzyubenko, G.A. Interpolated Estimate for Copositive Approximations by Algebraic Polynomials. Ukr Math J 74, 563–574 (2022). https://doi.org/10.1007/s11253-022-02083-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-022-02083-5

Navigation