Skip to main content
Log in

Conditional and Hidden Infinite-Dimensional Symmetries of Wave Equations

  • Published:
Ukrainian Mathematical Journal Aims and scope

We consider conditional and hidden symmetries of multidimensional wave equations generated by additional conditions. An additional condition corresponding to the dilation operator generates an infinite-dimensional symmetry for the wave equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. A. Yehorchenko and A. I. Vorobyova, Infinite-Dimensional Symmetry for Wave Equation with Additional Condition, Preprint arXiv:0910.2380 (2009).

  2. W. I. Fushchych and N. I. Serov, “The symmetry and some exact solutions of the nonlinear many-dimensional Liouville, d’Alembert, and eikonal equations,” J. Phys. A, 16, 3645–3658 (1983); https://doi.org/10.1088/0305-4470/16/15/030.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Tajiri, “Some remarks on similarity and soliton solutions of nonlinear Klein–Gordon equations,” J. Phys. Soc. Jpn., 53, 3759–3764 (1984); https://doi.org/10.1143/JPSJ.53.3759.

    Article  MathSciNet  Google Scholar 

  4. V. I. Fushchich, V. M. Shtelen’, and N. I. Serov, Symmetry Analysis and Exact Solutions of Nonlinear Equations of Mathematical Physics [in Russian], Naukova Dumka, Kiev (1989); English translation: V. I. Fushchych, W. Shtelen, and N. Serov, Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics, Kluwer AP, Dordrecht (1993).

  5. W. I. Fushchych and A. F. Barannyk, “On the exact solutions of the nonlinear d’Alembert operator in the Minkowski space R(1,n),Dop. Nats. Akad. Nauk Ukr., Ser. A, No. 6, 31–34 (1990).

  6. P. J. Olver and P. Rosenau, “The construction of special solutions to partial differential equations,” Phys. Lett. A, 114, 107–112 (1986); https://doi.org/10.1016/0375-9601(86)90534-7.

    Article  MathSciNet  MATH  Google Scholar 

  7. W. I. Fushchych and I. M. Tsyfra, “On a reduction and solutions of the nonlinear wave equations with broken symmetry,” J. Phys. A, 20, L45–L48 (1987); https://doi.org/10.1088/0305-4470/20/2/001.

    Article  MathSciNet  Google Scholar 

  8. W. I. Fushchych and R. Z. Zhdanov, “Symmetry and exact solutions of nonlinear spinor equations,” Phys. Rep., 172, 123–174 (1989); https://doi.org/10.1016/0370-1573(89)90090-2.

    Article  MathSciNet  Google Scholar 

  9. P. Clarkson and M. D. Kruskal, “New similarity reductions of the Boussinesq equation,” J. Math. Phys., 30, 2201–2213 (1989); https://doi.org/10.1063/1.528613.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Levi and P. Winternitz, “Non-classical symmetry reduction: example of the Boussinesq equation,” J. Phys. A, 22, 2915–2924 (1989); https://doi.org/10.1088/0305-4470/22/15/010.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Z. Zhdanov, I. M. Tsyfra, and R. O. Popovych, “A precise definition of reduction of partial differential equations,” J. Math. Anal. Appl., 238, No. 1, 101–123 (1999); https://doi.org/10.1006/jmaa.1999.6511.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. V. Ovsyannikov, Group Analysis of Differential Equations, Academic Press, New York (1982).

    Google Scholar 

  13. P. J. Olver, Application of Lie Groups to Differential Equations, Springer, New York (1987).

    Google Scholar 

  14. G. W. Bluman and S. Kumei, Symmetries and Differential Equations, Springer, New York (1989).

    Book  MATH  Google Scholar 

  15. I. A. Yehorchenko and A. I. Vorobyova, “Conditional invariance and exact solutions of the Klein–Gordon–Fock equation,” Dop. Nats. Akad. Nauk Ukr., No. 3, 19–22 (1992).

  16. W. I. Fushchych and N. I. Serov, “Conditional invariance of the nonlinear d’Alembert, Liouville, Born–Infeld, and Monge–Ampère equations with respect to a conformal algebra,” in: Symmetry Analysis and Solutions of the Equations of Mathematical Physics [in Russian], Inst. Mat., Akad. Nauk Ukr. SSR, Kyiv (1988), pp. 98–102.

  17. A. F. Barannyk and Yu. D. Moskalenko, “Conditional symmetry and exact solutions of the multidimensional nonlinear d’Alembert equation,” J. Nonlin. Math. Phys., 3 336–340 (1996); https://doi.org/10.2991/jnmp.1996.3.3-4.11.

    Article  MathSciNet  MATH  Google Scholar 

  18. V. Lahno, R. Zhdanov, and O. Magda, “Group classification and exact solutions of nonlinear wave equations,” Acta Appl. Math., 91, 253 (2006); https://doi.org/10.1007/s10440-006-9039-0.

    Article  MathSciNet  MATH  Google Scholar 

  19. V. M. Boyko, O. V. Lokaziuk, and R. O. Popovych, “Realizations of Lie algebras on the line and the new group classification of (1+1)-dimensional generalized nonlinear Klein–Gordon equations,” Anal. Math. Phys., 11, 127 (2021); https://doi.org/10.1007/s13324-021-00550-z.

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Opanasenko and R. Popovych, “Generalized symmetries and conservation laws of (1 + 1)-dimensional Klein–Gordon equation,” J. Math. Phys., 61, 101515 (2020); https://doi.org/10.1063/5.0003304.

    Article  MathSciNet  MATH  Google Scholar 

  21. I. A. Yehorchenko, “Group classification with respect to hidden symmetry”, in: A. G. Nikitin, V. M. Boyko, R. O. Popovych, and I. A. Yehorchenko (editors), Proc. of the Fifth Internat. Conf. “Symmetry in Nonlinear Mathematical Physics” (June 23–29, 2003, Kyiv), Proc. of the Institute of Mathematics, Kyiv, 50, Pt 1 (2004), pp. 290–297.

  22. B. Abraham-Shrauner, “Hidden symmetries and nonlocal group generators for ordinary differential equations,” IMA J. Appl. Math., 56, 235–252 (1996); https://doi.org/10.1093/imamat/56.3.235.

    Article  MathSciNet  MATH  Google Scholar 

  23. I. A. Yehorchenko, “Differential invariants, hidden and conditional symmetry” Ukr. Mat. Zh., 73, No. 8, 1023–1033 (2021); English translation: Ukr. Math. J., 73, No. 8, 1189–1199 (2022); https://doi.org/10.37863/umzh.v73i8.6377.

  24. W. I. Fushchych and R. Z. Zhdanov, “Antireduction and exact solutions of nonlinear heat equations,” J. Nonlin. Math. Phys., 1, 60–64 (1994); https://doi.org/10.2991/jnmp.1994.1.1.4.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yehorchenko.

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, No. 3, pp. 335–341, March, 2022. Ukrainian DOI: https://doi.org/10.37863/umzh.v74i3.7035.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yehorchenko, I., Vorobyova, A. Conditional and Hidden Infinite-Dimensional Symmetries of Wave Equations. Ukr Math J 74, 378–384 (2022). https://doi.org/10.1007/s11253-022-02069-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-022-02069-3

Navigation