Skip to main content
Log in

Estimates for Analytic Functions Connected with Hankel Determinant

  • Published:
Ukrainian Mathematical Journal Aims and scope

We give an upper bound of the first-order Hankel determinant (H2(1)) for the classes of analytic functions. In addition, an estimate with Hankel determinant from below is given for the second angular derivative of an analytic function f(z) . For new inequalities, we used the results obtained for Jack’s lemma and Hankel’s determinant. Moreover, in a class of analytic functions on the unit disc, the estimates of the modulus of angular derivative from below are obtained under the assumption of existence of an angular limit on the boundary point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Akyel and B. N. Örnek, “Sharpened forms of the generalized Schwarz inequality on the boundary,” Proc. Indian Acad. Sci. Math. Sci., 126, No. 1, 69–78 (2016).

    Article  MathSciNet  Google Scholar 

  2. T. A. Azeroğlu and B. N. Örnek, “A refined Schwarz inequality on the boundary,” Complex Var. Elliptic Equat., 58, No. 4, 571–577 (2013).

    Article  MathSciNet  Google Scholar 

  3. H. P. Boas, “Julius and Julia: mastering the art of the Schwarz lemma,” Amer. Math. Monthly, 117, No. 9, 770–785 (2010).

    Article  MathSciNet  Google Scholar 

  4. V. N. Dubinin, “The Schwarz inequality on the boundary for functions regular in the disc,” J. Math. Sci., 122, 3623–3629 (2004).

    Article  MathSciNet  Google Scholar 

  5. G. M. Golusin, Geometric Theory of Functions of Complex Variable [in Russian], 2nd ed., Nauka, Moscow (1966).

    Google Scholar 

  6. I. S. Jack, “Functions starlike and convex of order α,” J. London Math. Soc. (2), 3, 469–474 (1971).

    Article  MathSciNet  Google Scholar 

  7. M. Mateljevič, Rigidity of Holomorphic Mappings & Schwarz and Jack Lemma; DOI: 10.13140/RG.2.2.34140.90249.

  8. P. R. Mercer, “Sharpened versions of the Schwarz lemma,” J. Math. Anal. Appl., 205, 508–511 (1997).

    Article  MathSciNet  Google Scholar 

  9. P. R. Mercer, “Boundary Schwarz inequalities arising from Rogosinski’s lemma,” J. Class. Anal., 12, 93–97 (2018).

    Article  MathSciNet  Google Scholar 

  10. P. R. Mercer, “An improved Schwarz lemma at the boundary,” Open Math., 16, 1140–1144 (2018).

    Article  MathSciNet  Google Scholar 

  11. R. Osserman, “A sharp Schwarz inequality on the boundary,” Proc. Amer. Math. Soc., 128, No. 12, 3513–3517 (2000).

    Article  MathSciNet  Google Scholar 

  12. B. N. Örnek and T. Düzenli, “Bound estimates for the derivative of driving point impedance functions,” Filomat, 32, No. 18, 6211–6218 (2018).

    Article  MathSciNet  Google Scholar 

  13. B. N. Örnek and T. Düzenli, “Boundary analysis for the derivative of driving point impedance functions,” IEEE Trans. Circuits and Syst. Pt. II: Express Briefs, 65, No. 9, 1149–1153 (2018).

  14. B. N. Örnek, “Sharpened forms of the Schwarz lemma on the boundary,” Bull. Korean Math. Soc., 50, No. 6, 2053–2059 (2013).

    Article  MathSciNet  Google Scholar 

  15. Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin (1992).

    Book  Google Scholar 

  16. Ch. Pommerenke, “On the Hankel determinants of univalent functions,” Mathematika, 14, 108–112 (1967).

    Article  MathSciNet  Google Scholar 

  17. J. Sokól and D. K. Thomas, “The second Hankel determinant for alpha-convex functions,” Lith. Math. J., 58, No. 2, 212–218 (2018); DOI https://doi.org/10.1007/s10986-018-9397-0.

    Article  MathSciNet  MATH  Google Scholar 

  18. G. Szegö and M. Fekete, “Eine Bemerkung ¨uber ungerade schlichte Funktionen,” J. London Math. Soc., 2, 85–89 (1933).

    MathSciNet  MATH  Google Scholar 

  19. D. K. Thomas and J. W. Noonan, “On the second Hankel determinant of a really mean p-valent functions,” Trans. Amer. Math. Soc., 223, 337–346 (1976).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Örnek.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 73, No. 9, pp. 1205–1216, September, 2021. Ukrainian DOI: 10.37863/umzh.v73i9.907.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Örnek, B.N. Estimates for Analytic Functions Connected with Hankel Determinant. Ukr Math J 73, 1398–1411 (2022). https://doi.org/10.1007/s11253-022-02001-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-022-02001-9

Navigation