Skip to main content
Log in

Dissipative Dirac Operator with General Boundary Conditions on Time Scales

  • Published:
Ukrainian Mathematical Journal Aims and scope

We consider symmetric Dirac operators on bounded time scales. Under general boundary conditions, we describe extensions (dissipative, accumulative, self-adjoint, etc.) of these symmetric operators. We construct a self-adjoint dilation of the dissipative operator. Hence, we determine the scattering matrix of dilation. Then we construct a functional model of this operator and define its characteristic function. Finally, we prove that all root vectors of this operator are complete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. D. Lax and R. S. Phillips, Scattering Theory, Academic Press, New York (1967).

    MATH  Google Scholar 

  2. B. Sz. Nagy and C. Foiaş, Analyse Harmonique des Operateurs de L’espace de Hilbert, Masson et Cie, Akademiai Kiado, Paris, Budapest (1967).

  3. B. P. Allahverdiev, “Spectral problems of nonself-adjoint 1D singular Hamiltonian systems,” Taiwanese J. Math., 17, No. 5, 1487–1502 (2013).

    MathSciNet  MATH  Google Scholar 

  4. B. P. Allahverdiev, “Extensions, dilations, and functional models of Dirac operators,” Integral Equations Operator Theory, 51, 459–475 (2005).

    MathSciNet  MATH  Google Scholar 

  5. B. P. Allahverdiev, “Spectral analysis of dissipative Dirac operators with general boundary conditions,” J. Math. Anal. Appl., 283, 287–303 (2003).

    MathSciNet  MATH  Google Scholar 

  6. M. A. Naimark, Linear Differential Operators, 2nd ed., Nauka, Moscow (1969).

  7. M. L. Gorbachuk, V. I. Gorbachuk, Boundary-Value Problems for Operator Differential Equations, Naukova Dumka, Kiev (1984).

  8. A. Kuzhel, Characteristic Functions and Models of Nonself-Adjoint Operators, Kluwer Academic Publishers, Dordrecht (1996).

    MATH  Google Scholar 

  9. B. S. Pavlov, “Self-adjoint dilation of a dissipative Schrödinger operator and eigenfunction expansion,” Funct. Anal. Appl., 98, 172–173 (1975).

    MATH  Google Scholar 

  10. B. S. Pavlov, “Self-adjoint dilation of a dissipative Schrödinger operator and its resolution in terms of eigenfunctions,” Math. USSR Sb., 31, No. 4, 457–478 (1977).

    MATH  Google Scholar 

  11. B. S. Pavlov, “Dilation theory and spectral analysis of nonself-adjoint differential operators,” in: Proc. of the Seventh Winter School, Drogobych, 1974 [in Russian] (1976), pp. 3–69; English translation: Transl. II. Ser., Amer. Math. Soc., 115, 103–142 (1981).

  12. Yu. P. Ginzburg and N. A. Talyush, “Exceptional sets of analytic matrix functions, contracting and dissipative operators,” Izv. Vyssh. Uchebn. Zaved., Ser. Math., 267, 9–14 (1984).

    MathSciNet  MATH  Google Scholar 

  13. L. I. Ronkin, Introduction to the Theory of Entire Functions of Several Variables, Nauka, Moscow (1971).

    MATH  Google Scholar 

  14. J. Weidmann, “Spectral theory of ordinary differential operators,” Lecture Notes in Math., 1258 (1987).

  15. S. Hilger, Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, PhD Thesis, University of Würzburg (1988).

    MATH  Google Scholar 

  16. D. R. Anderson, G. Sh. Guseinov, and J. Hoffacker, “Higher-order self-adjoint boundary-value problems on time scales,” J. Comput. Appl. Math., 194, No. 2, 309–342 (2006).

    Article  MathSciNet  Google Scholar 

  17. F. Atici Merdivenci and G. Sh. Guseinov, “On Green’s functions and positive solutions for boundary value problems on time scales,” J. Comput. Appl. Math., 141, No. 1-2, 75–99 (2002).

    Article  MathSciNet  Google Scholar 

  18. M. Bohner and A. Peterson, Dynamic Equations on Time Scales, Birkhäuser, Boston (2001).

    Book  Google Scholar 

  19. M. Bohner and A. Peterson (Eds.), Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston (2003).

    MATH  Google Scholar 

  20. G. Sh. Guseinov, “Self-adjoint boundary value problems on time scales and symmetric Green’s functions,” Turkish J. Math., 29, No. 4, 365–380 (2005).

    MathSciNet  MATH  Google Scholar 

  21. V. Lakshmikantham, S. Sivasundaram, and B. Kaymakcalan, Dynamic Systems on Measure Chains, Kluwer Academic Publishers, Dordrecht (1996).

    MATH  Google Scholar 

  22. B. M. Levitan and I. S. Sargsjan, “Sturm–Liouville and Dirac operators,” Mathematics and Its Applications (Soviet Series), 59, Kluwer AP, Dordrecht (1991).

    Google Scholar 

  23. B. Thaller, The Dirac Equation, Springer (1992).

  24. B. P. Rynne, “L2 spaces and boundary value problems on time scales,” J. Math. Anal. Appl., 328, 1217–1236 (2007).

    MathSciNet  MATH  Google Scholar 

  25. T. Gulsen and E. Yilmaz, “Spectral theory of Dirac system on time scales,” Appl. Anal., 96, No. 16, 2684–2694 (2017).

    MathSciNet  MATH  Google Scholar 

  26. G. Sh. Guseinov, “An expansion theorem for a Sturm–Liouville operator on semi-unbounded time scales,” Adv. Dynam. Syst. Appl., 3, 147–160 (2008).

    MathSciNet  Google Scholar 

  27. G. Sh. Guseinov, “Eigenfunction expansions for a Sturm–Liouville problem on time scales,” Int. J. Difference Equat., 2, 93–104 (2007).

    MathSciNet  MATH  Google Scholar 

  28. A. Huseynov and E. Bairamov, “On expansions in eigenfunctions for second order dynamic equations on time scales,” Nonlin. Dynam. Syst. Theory, 9, 77–88 (2009).

    MathSciNet  MATH  Google Scholar 

  29. B. P. Allahverdiev, A. Eryilmaz, and H. Tuna, “Dissipative Sturm–Liouville operators with a spectral parameter in the boundary condition on bounded time scales,” Electron. J. Different. Equat., 95, 1–13 (2017).

    MathSciNet  MATH  Google Scholar 

  30. B. P. Allahverdiev, “Extensions of symmetric singular second-order dynamic operators on time scales,” Filomat, 30, No. 6, 1475–1484 (2016).

    MathSciNet  Google Scholar 

  31. B. P. Allahverdiev, “Nonself-adjoint singular second-order dynamic operators on time scale,” Math. Methods Appl. Sci., 42, 229–236 (2019).

    MathSciNet  MATH  Google Scholar 

  32. B. P. Allakhverdiev and H. Tuna, “Spectral analysis of singular Sturm–Liouville operators on time scales,” Ann. Univ. M. Curie-Skłodowska, Sec. A, 72, No. 1, 1–11 (2018).

    MathSciNet  MATH  Google Scholar 

  33. H. Tuna, “Dissipative Sturm–Liouville operators on bounded time scales,” Mathematica, 56, 80–92 (2014).

    MathSciNet  MATH  Google Scholar 

  34. H. Tuna, “Completeness of the root vectors of dissipative Sturm–Liouville operators in time scales,” Appl. Math. Comput., 228, 108–115 (2014).

    MathSciNet  MATH  Google Scholar 

  35. H. Tuna, “Completeness theorem for the dissipative Sturm–Liouville operators on bounded time scales,” Indian J. Pure Appl. Math., 47, No. 3, 535–544 (2016).

    MathSciNet  MATH  Google Scholar 

  36. H. Tuna and M. A. Özek, “The one-dimensional Schrödinger operator on bounded time scales,” Math. Methods Appl. Sci., 40, No. 1, 78–83 (2017).

    MathSciNet  MATH  Google Scholar 

  37. A. Huseynov, “Limit point and limit circle cases for dynamic equations on time scales,” Hacet. J. Math. Stat., 39, 379–392 (2010).

    MathSciNet  MATH  Google Scholar 

  38. A. S. Özkan, “Parameter-dependent Dirac systems on time scales,” Cumhuriyet Sci. J., 39, No. 4, 864–870 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Tuna.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 72, No. 5, pp. 583–599, May, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allahverdiev, B.P., Tuna, H. Dissipative Dirac Operator with General Boundary Conditions on Time Scales. Ukr Math J 72, 671–689 (2020). https://doi.org/10.1007/s11253-020-01808-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-020-01808-8

Navigation