Skip to main content
Log in

Almost Periodic Solutions of Lotka–Volterra Systems with Diffusion and Pulsed Action

  • Published:
Ukrainian Mathematical Journal Aims and scope

We establish sufficient conditions for the existence and asymptotic stability of positive piecewise continuous almost periodic solutions to the Lotka–Volterra systems of differential equations with diffusion and pulsed action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. U. Akhmet, M. Beklioglu, T. Ergenc, and V. I. Tkachenko, “An impulsive ratio-dependent predator-prey system with diffusion,” Nonlin. Anal.: Real World Appl., 7, No. 5, 1255–1267 (2006).

    Article  MathSciNet  Google Scholar 

  2. A. I. Dvirnyj and V. I. Slyn’ko, “Stability in terms of two measures for a class of semilinear impulsive parabolic equations,” Sb. Math., 204, No. 4, 485–507 (2013).

    Article  MathSciNet  Google Scholar 

  3. C. Li, X. Guo, and D. He, “An impulsive diffusion predator-prey system in three species with Beddington–DeAngelis response,” J. Appl. Math. Comput., 43, No. 1-2, 235–248 (2013).

    Article  MathSciNet  Google Scholar 

  4. O. O. Struk and V. I. Tkachenko, “On impulsive Lotka–Volterra systems with diffusion,” Ukr. Mat. Zh., 54, No. 4, 514–526 (2002); English translation : Ukr. Math. J., 54, No. 4, 629–646 (2002).

  5. X. Wang and Z. Li, “Global attractivity and oscillations in a nonlinear impulsive parabolic equation with delay,” Kyungpook Math. J., 48, No. 4, 593–611 (2008).

    MathSciNet  MATH  Google Scholar 

  6. A. Halanay and D. Wexler, Teoria Calitativă a Sistemelor cu Impulsuri [Russian translation], Mir, Moscow (1971).

    MATH  Google Scholar 

  7. A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore (1995).

    Book  Google Scholar 

  8. M. U. Akhmetov and N. A. Perestyuk, “Periodic and almost periodic solutions of strongly nonlinear impulse systems,” J. Appl. Math. Mech., 56, No. 6, 829–837 (1992).

    Article  MathSciNet  Google Scholar 

  9. A.V. Dvornyk and V. I. Tkachenko, “Almost periodic solutions for systems with delay and nonfixed times of impulsive actions,” Ukr. Mat. Zh., 68, No. 11, 1450–1466 (2016); English translation : 68, No. 11, 1673–1693 (2017).

  10. R. Hakl, M. Pinto, V. Tkachenko, and S. Trofimchuk, “Almost periodic evolution systems with impulse action at state-dependent moments,” J. Math. Anal. Appl., 446, No. 1, 1030–1045 (2017).

    Article  MathSciNet  Google Scholar 

  11. M. Pinto and G. Robledo, “Existence and stability of almost periodic solutions in impulsive neural network models,” Appl. Math. Comput., 217, No. 8, 4167–4177 (2010).

    MathSciNet  MATH  Google Scholar 

  12. A. M. Samoilenko and S. I. Trofimchuk, “Almost periodic impulsive systems,” Different. Equat., 29, No. 4, 684–691 (1993).

    MATH  Google Scholar 

  13. G. T. Stamov, Almost Periodic Solutions of Impulsive Differential Equations, Springer, Heidelberg (2012).

    Book  Google Scholar 

  14. V. Tkachenko, “Almost periodic solutions of parabolic type equations with impulsive action,” Funct. Different. Equat., 21, No. 3–4, 155–169 (2014).

    MathSciNet  MATH  Google Scholar 

  15. V. Tkachenko, “Almost periodic solutions of evolution differential equations with impulsive action,” in: Mathematical Modeling and Applications in Nonlinear Dynamics, Springer, New York (2016), pp. 161–205.

    Chapter  Google Scholar 

  16. W. A. Coppel, “Almost periodic properties of ordinary differential equations,” Ann. Mat. Pura Appl., Ser. 4, 76, No. 1, 27–49 (1967).

    Article  MathSciNet  Google Scholar 

  17. T. Yoshizawa, “Asymptotically almost periodic solutions of an almost periodic system,” Funkc. Ekvacioj., 12, No. 1, 23–40 (1969).

    MathSciNet  MATH  Google Scholar 

  18. Yu. M. Myslo and V. I. Tkachenko, “Global attractivity in almost periodic single-species models,” Funct. Different. Equat., 18, No. 3–4, 269–278 (2011).

    MathSciNet  MATH  Google Scholar 

  19. A. M. Samoilenko and S. I. Trofimchuk, “Unbounded functions with almost periodic differences,” Ukr. Mat. Zh., 43, No. 10, 1409–1413 (1991); English translation : Ukr. Math. J., 43, No. 10, 1306–1309 (1991).

  20. A. V. Dvornyk and V. I. Tkachenko, “On the stability of solutions of evolutionary equations with nonfixed times of pulse actions,” Nelin. Kolyv., 18, No. 4, 475–488 (2015); English translation : J. Math. Sci., 220, No. 4, 425–439 (2017).

  21. D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, Berlin (1981).

    Book  Google Scholar 

  22. L. H. Smith, Dynamics of Competition, Springer, Berlin (1999).

    Book  Google Scholar 

  23. N. D. Alikakos, “An application of the invariance principle to reaction-diffusion equations,” J. Different. Equat., 33, No. 2, 201–225 (1979).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 70, No. 2, pp. 177–192, February, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dvornyk, A., Struk, O.O. & Tkachenko, V.I. Almost Periodic Solutions of Lotka–Volterra Systems with Diffusion and Pulsed Action. Ukr Math J 70, 197–216 (2018). https://doi.org/10.1007/s11253-018-1495-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-018-1495-y

Navigation