Skip to main content
Log in

Point Interactions in a Line and the Riesz Bases of δ-Functions

  • Published:
Ukrainian Mathematical Journal Aims and scope

We present a description of the relationship between the Sobolev spaces \( {W}_2^1 \)(ℝ) and \( {W}_2^2 \)(ℝ) and the Hilbert space 2. Let Y be a finite or countable set of points on ℝ and let d ≔ inf {|y − y′′|, y, y′′ ∈ Y, y ≠ y′′}. By using this relationship, we prove that if d = 0, then the systems of δ –functions {δ(x − yj), yj ∈ Y} and their derivatives {δ(x − yj), yj ∈ Y} do not form Riesz bases in the closures of their linear spans in the Sobolev spaces \( {W}_2^{-1} \)(ℝ) and \( {W}_2^{-2} \)(ℝ) but, on the contrary, form the indicated bases in the case where d > 0. We also present the description of Friedrichs and Krein extensions and demonstrate their transversality. Moreover, the construction of a basis boundary triple and the description of all nonnegative self-adjoint extensions of the operator A′ are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics, Springer, New York (1988).

  2. Yu. Arlinskii, S. Hassi, Z. Sebestyen, and H. de Snoo, “On the class of extremal extensions of nonnegative operators,” Oper. Theory: Adv. Appl., 127, 41–81 (2001).

    MathSciNet  MATH  Google Scholar 

  3. Yu. M. Arlinskii, “Positive spaces of boundary values and sectorial extensions of a nonnegative symmetric operator,” Ukr. Math. Zh., 40, No. 1, 8–14 (1988); English translation: Ukr. Math. J., 40, No. 1, 5–10 (1988).

  4. Yu. M. Arlinskii and Yu. G. Kovalev, “Operators in divergence form and their Friedrichs and Krein extensions,” Opusc. Math., 31, No. 4, 501–517 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  5. Yu. M. Arlinskii and E. R. Tsekanovskii, “The von Neumann problem for nonnegative symmetric operators,” Integral Equat. Oper. Theory, 315–356 (2005).

  6. Yu. M. Arlinskii and E. R. Tsekanovskii, “Nonself-adjoint contractive extensions of Hermitian contractions and M. G. Krein’s theorems,” Usp. Mat. Nauk, 37, No. 1, 131–132 (1982).

    Google Scholar 

  7. Yu. M. Berezanskii, Expansions in Eigenfunctions of Self-Adjoint Operators [in Russian], Naukova Dumka, Kiev (1965).

  8. F. A. Berezin and L. D. Faddeev, “Remark on the Schrödinger equation with singular potential,” Dokl. Akad. Nauk Ukr. SSR, 137, No. 5, 1011–1014 (1967).

    Google Scholar 

  9. V. M. Bruk, “On one class of boundary-value problems with spectral parameter in the boundary condition,“ Mat. Sb., 100, No. 2, 210–216 (1976).

  10. M. I. Vishik, “On the general boundary-value problems for elliptic differential equations,” Tr. Mosk. Mat. Obshch., No. 1, 187–246 (1952).

  11. M. L. Gorbachuk and V. I. Gorbachuk, Boundary-Value Problems for Differential-Operator Equations [in Russian], Naukova Dumka, Kiev (1984).

  12. I. Ts. Gokhberg and M. G. Krein, Introduction to the Theory of Linear Nonself-Adjoint Operators in Hilbert Spaces [in Russian], Nauka, Moscow (1965).

  13. T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin (1966).

  14. Yu. G. Kovalev, “1D nonnegative Schrödinger operators with point interactions,” Mat. Stud., 39, No. 2, 150–163 (2013).

    MathSciNet  MATH  Google Scholar 

  15. Yu. G. Kovalev, “On the theory of nonnegative Hamiltonians in a plane and in a space,” Ukr. Mat. Byul., 11, No. 2, 203–226 (2014).

    Google Scholar 

  16. A. S. Kostenko and M. M. Malamud, “1-D Schrödinger operators with local point interactions on a discrete set,” J. Different. Equat., 249, No. 2, 253–304 (2010).

    Article  MATH  Google Scholar 

  17. A. N. Kochubei, “One-dimensional point interactions,” Ukr. Mat. Zh., 41, No. 10, 1391–1395 (1989); English translation: Ukr. ath. J., 41, No. 10, 1198–1201 (1989).

  18. A. N. Kochubei, “On the extensions of symmetric operators and symmetric binary relations,” Mat. Zametki, 17, No. 1, 41–48 (1975).

    MathSciNet  Google Scholar 

  19. V. D. Koshmanenko, Singular Bilinear Forms in the Perturbation Theory of Self-Adjoint Operators [in Russian], Naukova Dumka, Kiev (1993).

  20. M. G. Krein, “Theory of self-adjoint extensions of semibounded Hermitian operators and its applications,” Mat. Sb., 20, No. 3, 431–495 (1947).

    MATH  Google Scholar 

  21. M. M. Malamud, “Certain classes of extensions of a lacunary Hermitian operator,” Ukr. Mat. Zh., 44, No. 2, 190–204 (1992); English translation: Ukr. Math. J., 44, No. 2, 215–234 (1992).

  22. M. M. Malamud and K. Schmüdgen, “Spectral theory of Schrödinger operators with infinitely many point interactions and radial positive definite functions,” J. Funct. Anal., 263, 3144–3194 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  23. V. A. Mikhailets, “The one-dimensional Schrödinger operator with point interactions,” Dokl. Akad. Nauk, 49, 345–349 (1994).

    MathSciNet  Google Scholar 

  24. V. A. Mikhailets, “Spectral properties of the one-dimensional Schrödinger operator with point intersections,” Rept. Math. Phys., 36, No. 2/3, 495–500 (1995).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 69, No. 12, pp. 1615–1624, December, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koval’ov, Y.H. Point Interactions in a Line and the Riesz Bases of δ-Functions. Ukr Math J 69, 1877–1890 (2018). https://doi.org/10.1007/s11253-018-1477-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-018-1477-0

Navigation