Skip to main content
Log in

Approximating Properties of Biharmonic Poisson Integrals in the Classes \( {W}_{\beta}^r{H}^{\alpha } \)

  • Published:
Ukrainian Mathematical Journal Aims and scope

We deduce asymptotic equalities for the least upper bounds of the approximations of functions from the classes \( {W}_{\beta}^r{H}^{\alpha } \) and H α by biharmonic Poisson integrals in the uniform metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1977).

    MATH  Google Scholar 

  2. B. Nagy, “Über gewise Extremalfragen bei transformierten trigonometrischen Entwicklungen, I,” Period. Fall, Ber. Math. Phys. KL. Akad., 90, 103–134 (1938).

    MATH  Google Scholar 

  3. A. I. Stepanets, Methods of Approximation Theory [in Russian], Vol. 1, Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (2002).

    Google Scholar 

  4. S. Kaniev, “On the deviation of functions biharmonic in a disk from their boundary values,” Dokl. Akad. Nauk SSSR, 153, No. 5, 995–998 (1963).

    MathSciNet  MATH  Google Scholar 

  5. P. Pych, “On a biharmonic function in unit disc,” Ann. Pol. Math., 20, No. 3, 203–213 (1968).

    MathSciNet  MATH  Google Scholar 

  6. L. P. Falaleev, “Complete asymptotic decomposition for the upper bound of the deviation of functions from Lip11 from a singular integral,” in: Proc. of the All-Union Mathematical Symp. “Embedding Theorems and Their Applications” [in Russian], Nauka, Alma-Ata (1976), pp. 163–167.

  7. T. I. Amanov and L. P. Falaleev, “Approximation of differentiable functions by Abel–Poisson-type operators,” Proc. of the Fifth Soviet–Czechoslovak Meeting on the Application of Methods of the Theory of Functions and Functional Analysis to Problems of Mathematical Physics (Alma-Ata, 1976) [in Russian], Novosibirsk (1979), pp. 13–16.

  8. K. M. Zhyhallo and Yu. I. Kharkevych, “On the approximation of functions of the Hölder class by biharmonic Poisson integrals,” Ukr. Mat. Zh., 52, No. 7, 971–974 (2000); English translation: Ukr. Math. J., 52, No. 7, 1113–1117 (2000).

  9. K. M. Zhyhallo and Yu. I. Kharkevych, “Approximation of differentiable periodic functions by their biharmonic Poisson integrals,” Ukr. Mat. Zh., 54, No. 9, 1213–1219 (2002); English translation: Ukr. Math. J., 52, No. 7, 1462–1470 (2002).

  10. Yu. I. Kharkevych and I. V. Kal’chuk, “Asymptotics of the values of approximations in the mean for classes of differentiable functions by using biharmonic Poisson integrals,” Ukr. Mat. Zh., 59, No. 8, 1105–1115 (2007); English translation: Ukr. Math. J., 59, No. 8, 1224–1237 (2007).

  11. K. M. Zhyhallo and Yu. I. Kharkevych, “Approximation of conjugate differentiable functions by biharmonic Poisson integrals,” Ukr. Mat. Zh., 61, No. 3, 333–345 (2009); English translation: Ukr. Math. J., 61, No. 3, 399–413 (2009).

  12. S. Kaniev, “Sharp estimate for the mean deviation of functions biharmonic in a disk from their boundary values,” Dop. Akad. Nauk Ukr. RSR, No. 4, 451–453 (1964).

  13. V. A. Petrov, “Biharmonic Poisson integral,” Lit. Mat. Sb., 7, No. 1, 137–142 (1967).

    MathSciNet  Google Scholar 

  14. V. N. Trofimov and A. S. Tsygankov, “Sharp inequalities for the oscillations of harmonic and biharmonic functions in a disk,” Sib. Mat. Zh., 10, No. 2, 398–416 (1969).

    Article  MATH  Google Scholar 

  15. L. Gonzales, E. Keller, and G. Wildenhain, “Über das Randverhalten des Poisson-Integrals der polyharmonischen Gleichung,” Math. Nachr., 95, 157–164 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  16. S. B. Hembars’ka, “Tangential limit values of a biharmonic Poisson integral in a disk,” Ukr. Mat. Zh., 49, No. 9, 1171–1176 (1997); English translation: Ukr. Math. J., 49, No. 9, 1317–1323 (1997).

  17. V. P. Zastavnyi, “Sharp estimate for the approximation of some classes of differentiable functions by convolution operators,” Ukr. Mat. Visn., 7, No. 3, 409–433 (2010).

    MathSciNet  Google Scholar 

  18. K. M. Zhyhallo and Yu. I. Kharkevych, “Approximation of functions from the classes \( {C}_{\beta, \infty}^{\psi } \) ,Ukr. Mat. Zh., 63, No. 7, 939–959 (2011); English translation: Ukr. Math. J., 63, No. 7, 1083–1107 (2011).

  19. L. I. Bausov, “Linear methods of summation of the Fourier series with given rectangular matrices. I,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., 46, No. 3, 15–31 (1965).

    MathSciNet  Google Scholar 

  20. K. M. Zhyhallo and Yu. I. Kharkevych, “Approximation of (ψ, β)-differentiable functions of low smoothness by biharmonic Poisson integrals,” Ukr. Mat. Zh., 63, No. 12, 1602–1622 (2011); English translation: Ukr. Math. J., 63, No. 12, 1820–1844 (2012).

  21. Yu. I. Kharkevich and T. A. Stepanyuk, “Approximation properties of Poisson integrals for the classes \( {C}_{\beta}^{\psi }{H}^{\alpha } \) ,Math. Notes, 96, No. 5, 1008–1019 (2014).

  22. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian], Fizmatgiz, Moscow (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 68, No. 11, pp. 1493–1504, November, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kal’chuk, I.V., Kharkevych, Y.I. Approximating Properties of Biharmonic Poisson Integrals in the Classes \( {W}_{\beta}^r{H}^{\alpha } \) . Ukr Math J 68, 1727–1740 (2017). https://doi.org/10.1007/s11253-017-1323-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-017-1323-9

Navigation