Skip to main content

Advertisement

Log in

The effect of urban green roof design on beetle biodiversity

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

An Author Correction to this article was published on 12 August 2021

This article has been updated

Abstract

The biodiversity conservation value of urban green spaces depends in part on design and management. The importance of habitat quality and complexity to species diversity has led to the suggestion that habitat design elements—varied substrate, greater plant diversity, logs or stones—would support invertebrate diversity on green roofs. To evaluate this possibility, we conducted pit-fall trap sampling on three green roofs of simple design (intended primarily for stormwater management), three habitat roofs, and five ground-level green spaces, in the Portland, Oregon metropolitan area. Beetles (Coleoptera) were sampled as representatives of total invertebrate diversity. Diversity was compared using sample coverage and Hill numbers to account for differences in sample intensity and fundamental differences in species diversity. Both habitat roofs and ground sites consisted of just over 20% native species, while stormwater roofs had about 5% native species, all of which were considered pests. We collected a greater abundance of beetles on the ground compared to roof sites like others have shown. However, when sample completeness is taken into account, habitat roofs had greater Shannon diversity compared to both ground and stormwater roof sites. Habitat roofs had the fewest dominant species representing 5% or more of total abundance, but also the lowest percent of species represented by singletons (27%). These results indicate that green roofs can support different beetle communities compared to those present at ground-level urban green spaces; our results also support previous findings that biodiverse design can reliably increase green roof diversity compared to more simply designed roofs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Data from this work is provided in a supplemental file.

Code availability

R Statistical Software and libraries, open source.

Change history

References

  • Alyokhin A, Sewell G (2004) Changes in a lady beetle community following the establishment of three alien species. Biol Invasions 6:463–471

    Article  Google Scholar 

  • Angold PG, Sadler JP, Hill MO, Pullin A, Rushton S, Austin K, Small E, Wood B, Wadsworth R, Sanderson R, Thompson K (2006) Biodiversity in urban habitat patches. Sci Total Environ 360:196–204. https://doi.org/10.1016/j.scitotenv.2005.08.035

    Article  CAS  PubMed  Google Scholar 

  • Aronson MF, Lepczyk CA, Evans KL, Goddard MA, Lerman SB, MacIvor JS, Nilon CH, Vargo T (2017) Biodiversity in the city: key challenges for urban green space management. Front Ecol Environ 15(4):189–196. https://doi.org/10.1002/fee.1480

    Article  Google Scholar 

  • Bahlai CA, Colunga-Garcia M, Gage SH, Landis DA (2015) The role of exotic ladybeetles in the decline of native ladybeetle populations: evidence from long-term monitoring. Biol Invasions 17 (4):1005–1024

  • Bates AJ, Mackay R, Greswell RB, Sadler JP (2009) SWITCH in Birmingham, UK: experimental investigation of the ecological and hydrological performance of extensive green roofs. Rev Environ Sci Biotechnol 8:295–300. https://doi.org/10.1007/s11157-009-9177-8

    Article  Google Scholar 

  • Bates AJ, Sadler JP, Mackay R (2013) Vegetation development over four years on two green roofs in the UK. Urban For Urban Green 12(1):98–108. https://doi.org/10.1016/j.ufug.2012.12.003

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300. http://www.jstor.org/stable/2346101

  • Blank L, Vasl A, Schindler BY, Kadas GJ, Blaustein L (2017) Horizontal and vertical island biogeography of arthropods on green roofs: a review. Urban Ecosyst 20 (4):911–917

  • Borcard D, Gillet F, Legendre P (2018) Numerical Ecology in R. Springer, New York, New York

    Book  Google Scholar 

  • Braaker S, Ghazoul J, Obrist MK, Moretti M (2014) Habitat connectivity shapes urban arthropod communities: the key role of green roofs. Ecology 95(4):1010–1021

    Article  CAS  Google Scholar 

  • Brenneisen S (2003) Ökologisches Ausgleichspotenzial von extensiven Dachbegrünungen-Bedeutung für denArten- und Naturschutz und die Stadtentwicklungsplanung. Doctoral dissertation, Institute of Geography, University of Basel

  • Brenneisen S (2006) Space for urban wildlife: Designing green roofs as habitats in Switzerland. Urban Habitats 4:27–36

    Google Scholar 

  • Brenneisen S, Hänggi A (2006) Begrünte Dächer – ökofaunistische Charakterisierung eines Habitatstyps in Siedlungsgebieten anhand eines Vergleichs der Spinnenfauna von Dach-begrünungen mit naturschutzrelevanten Bahnarealen in Basel (Schweiz). Mitteilungen Der Naturforschenden Gesellschaften Beider Basel 9:99–122

    Google Scholar 

  • Bright DE, Bouchard P (2008) Weevils of Canada and Alaska: Coleoptera, curculionidae, entiminae. NRC Research Press

  • Burkepile DE, Thurber RV (2019) The long arm of species loss: How will defaunation disrupt ecosystems down to the microbial scale? BioScience 69:443–454. https://doi.org/10.1093/biosci/biz047

    Article  Google Scholar 

  • Cáceres MD, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90(12):3566–3574

    Article  Google Scholar 

  • Cameron KH, Leather SR (2012) How good are carabid beetles (Coleoptera, Carabidae) as indicators of invertebrate abundance and order richness? Biodivers Conserv 21:763–779. https://doi.org/10.1007/s10531-011-0215-9

    Article  Google Scholar 

  • Chao A, Gotelli NJ, Hsieh TC, Sandler EL, Ma KH, Colwell RK, Ellison AM (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84(1):45–67

    Article  Google Scholar 

  • Chao A, Jost L (2012) Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93(12):2533–2547. https://doi.org/10.1890/11-1952.1

    Article  PubMed  Google Scholar 

  • City of Toronto (2020). Accessed 9 Sept 2020. Retrieved from https://www.toronto.ca/city-government/planning-development/official-plan-guidelines/green-roofs/

  • Colwell RK, Chao A, Gotelli NJ, Lin SY, Mao CX, Chazdon RL, Longino JT (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation, and comparison of assemblages. J Plant Ecol 5(1):3–21

    Article  Google Scholar 

  • Cook-Patton SC, Bauerle TL (2012) Potential benefits of plant diversity on vegetated roofs: A literature review. J Environ Manag 106:85–92. https://doi.org/10.1016/j.jenvman.2012.04.003

    Article  Google Scholar 

  • Croci S, Butet A, Georges A, Aguejdad R, Clergeau P (2008) Small urban woodlands as biodiversity conservation hot-spot: A multi-taxon approach. Landsc Ecol 23:1171–1186. https://doi.org/10.1007/s10980-008-9257-0

    Article  Google Scholar 

  • De Cáceres, M (2020) How to use the indicspecies R package (ver. 1.7.8). February 4, 2020. Accessed at https://cran.r-project.org/web/packages/indicspecies/vignettes/indicspeciesTutorial.pdf July 2020

  • Duelli P, Obrist MK (1998) In search of the best correlates for local organismal biodiversity in cultivated areas. Biodivers Conserv 7:297–309. https://doi.org/10.1023/A:1008873510817

    Article  Google Scholar 

  • Ellison AM (2010) Partitioning Diversity. Ecology 91(7):1962–1963. https://doi.org/10.1890/09-1692.1

    Article  PubMed  Google Scholar 

  • Fattorini S, Sciotti A, Patrizio T, Di Guillio A (2013) Species distribution, ecology, abundance, body size, and phylogeny, originate interrelated rarity patterns at regional scale. J Zool Syst Evol Res 51(4):279–286. https://doi.org/10.1111/jzs.12026

    Article  Google Scholar 

  • Gedge D, Kadas G (2005) Green roofs and biodiversity. Biologist 52:161–169

    Google Scholar 

  • Goddard MA, Dougill AJ, Benton TG (2010) Scaling up from gardens: biodiversity conservation in urban environments. Trends Ecol Evol 25:90–98. https://doi.org/10.1016/j.tree.2009.07.016

    Article  PubMed  Google Scholar 

  • Gómez-Baggethun E, Gren Å, Barton DN, Langemeyer J, McPhearson T, O’Farrell P, Andersson E, Hamstead Z, Kremer P (2013) Urban ecosystem services. In Urbanization, biodiversity and ecosystem services: Challenges and opportunities (pp 175–251). Springer, Dordrecht

  • Grimm NB, Pickett STA, Hale RL, Cadenasso ML (2017) Does the ecological concept of disturbance have utility in urban social–ecological–technological systems? Ecosyst Health Sustain 3:e01255. https://doi.org/10.1002/ehs2.1255

  • Hill MO (1973) Diversity and Evenness: A unifying notion and its consequences. Ecology 54(2):427–432. https://doi.org/10.2307/1934352

    Article  Google Scholar 

  • Hsieh TC, Ma KH, Chao A (2020) iNEXT: iNterpolation and EXTrapolation for species diversity. R package version 2.0.20 Retrieved from :http://chao.stat.nthu.edu.tw/wordpress/software-download/

  • Ido S, Shimrit P-F (2015) Blue is the new green – Ecological enhancement of concrete based coastal and marine infrastructure. Ecol Eng 84:260–272. https://doi.org/10.1016/j.ecoleng.2015.09.016

    Article  Google Scholar 

  • Jones EL, Leather SR (2012) Invertebrates in urban areas: A review. Eur J Entomol 109:463–478. https://doi.org/10.14411/eje.2012.060

  • Jost L, DeVries P, Walla T, Greeney H, Chao A, Ricotta C (2010) Partitioning diversity for conservation analyses. Divers Distrib 16(1):65–76

    Article  Google Scholar 

  • Kadas G (2006) Rare invertebrates colonizing green roofs in London. Urban Habitats 4(1):66–86

    Google Scholar 

  • Kindler SD, Spomer SM (1986) Observations on the Biology of the Bluegrass Billbug, Sphenophorus parvulus Gyllenhal (Coleoptera: Curculionidae), in an Eastern Nebraska Sod Field. J Kansas Entomol Soc 59:26–31

    Google Scholar 

  • Kolasa J, Manne LL, Pandit SN (2012) Species–area relationships arise from interaction of habitat heterogeneity and species pool. Hydrobiologia 685 (1):135–144

  • Kotze DJ, Kuoppamäki K, Niemikapee J, Mesimäki M, Vaurola V, Lehvävirta S (2020) A revised terminology for vegetated rooftops based on function and vegetation. Urban For Urban Gree 49:126644

  • Kovalenko KE, Thomaz SM, Warfe DM (2012) Habitat complexity: approaches and future directions. Hydrobiologia 685:1–17. https://doi.org/10.1007/s10750-011-0974-z

    Article  Google Scholar 

  • Kowarik I (2011) Novel ecosystems, biodiversity, and conservation. Environ Pollut 159(8–9):1974–1983

    Article  CAS  Google Scholar 

  • Ksiazek K, Fant J, Skogen K (2012) An assessment of pollen limitation on Chicago green roofs. Landsc Urban Plan 107:401–408

    Article  Google Scholar 

  • Kyrö K, Brenneisen S, Kotze DJ, Szallies A, Gerner M, Lehvävirta S (2017) Local habitat characteristics have a stronger effect than the surrounding urban landscape on beetle communities on green roofs. Urban for Urban Green 29(2018):122–130

    Google Scholar 

  • Landolt E (2001) Orchideen-Wiesen in Wollishofen (Zürich) – ein erstaunliches Relikt aus dem Anfang des 20. Jahrhunderts. In: Vierteljahreschrift der Naturforschenden Gesellschaft in Zürich 146/2–3: 41–51

  • LaBonte JR, Nelson RE (1998) North American distribution and habitat of Elaphropus parvulus (Dejean), an introduced, non-Synanthropic Carabid Beetle (Coleoptera: Carabidae). Coleopt Bull 52(1):35–42

    Google Scholar 

  • LaBonte JR (2011) Nebria brevicollis (Fabricius, 1792) in North America, benign or malign? (Coleoptera, Carabidae, Nebriini). ZooKeys 147:497–543

    Article  Google Scholar 

  • Liebherr JK, Takumi RL (2002) Introduction and Distributional Expansion of Trechus obtusus (Coleoptera: Carabidae) in Maui, Hawai’i. Pac Sci 56:365–375. https://doi.org/10.1353/psc.2002.0035

    Article  Google Scholar 

  • Lorimer J (2008) Living roofs and brownfield wildlife: Towards a fluid biogeography of UK nature conservation. Environ Plan A 40:2042–2060. https://doi.org/10.1068/a39261

    Article  Google Scholar 

  • MacArthur RH, MacArthur JW (1961) On bird species diversity. Ecology 42:594–598. https://doi.org/10.2307/1932254

    Article  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • MacIvor JS, Lundholm J (2011) Insect species composition and diversity on intensive green roofs and adjacent level-ground habitats. Urban Ecosyst 14:225–241. https://doi.org/10.1007/s11252-010-0149-0

    Article  Google Scholar 

  • MacIvor JS (2015) Building height matters: Nesting activity of bees and wasps on vegetated roofs. Isr J Ecol Evol 62:88–96. https://doi.org/10.1080/15659801.2015.1052635

    Article  Google Scholar 

  • Madre F, Vergnes A, Machon N, Clergeau P (2013) A comparison of 3 types of green roof as habitats for arthropods. Ecol Eng 57:109–117. https://doi.org/10.1016/j.ecoleng.2013.04.029

    Article  Google Scholar 

  • Majka CG, Bousquet Y, Westby S (2007) The ground beetles (Coleoptera: Carabidae) of the Maritime Provinces of Canada: review of collecting, new records, and observations on composition, zoogeography, and historical origins. Zootaxa 1–36

  • McAbendroth L, Ramsay PM, Foggo A, Rundle SD, Bilton DT (2005) Does macrophytes fractal complexity drive invertebrate diversity, biomass and body size distributions? Oikos 111:279–290

    Article  Google Scholar 

  • McIntyre NE (2000) Ecology of Urban Arthropods: A Review and a Call to Action. Ann Entomol Soc Am 93 (4):825–835

  • McIntyre NE, Rango J, Fagan WF, Faeth SH (2001) Ground arthropod community structure in a heterogeneous urban environment. Landsc Urban Plan 52:257–274. https://doi.org/10.1016/S0169-2046(00)00122-5

    Article  Google Scholar 

  • Moldenke AR (1999) Soil-dwelling arthropods: their diversity and functional roles. In RT Meurisse, WG. Ypsilantis, & C Seybold (Eds.), Proceedings: Pacific Northwest Forest and Rangeland Soil Organism Symposium. U.S. Department of Agriculture Forest Service General Technical Report PNW-GTR-4619 (pp 33–44)

  • Niemela J, Kotze DJ (2009) Carabid beetle along urban to rural gradients: A review. Landsc Urban Plan 92(2):65–71. https://doi.org/10.1016/j.landurbplan.2009.05.016

    Article  Google Scholar 

  • Nikles E, Knobel B, Reisner Y (2020) Flachdachbegrünung. Flachdächer richtig begrünen – das ökologische Potenzial nutzen. Editor: Bau- und Verkehrsdepartement des Kantons Basel-Stadt, Stadtgärtnerei Basel

  • Oksansen J, Guillaume Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, … Wagner H (2019) vegan: Community Ecology Package. R package version 2.5-5. https://CRAN.R-project.org/package=vegan

  • Palmer MA, Menninger HL, Bernhardt E (2010) River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice? Freshw Biol 55:205–222. https://doi.org/10.1111/j.1365-2427.2009.02372.x

    Article  Google Scholar 

  • Pataki DE (2015) Grand challenges in urban ecology. Front Ecol Evol 3:57. https://doi.org/10.3389/fevo.2015.00057

    Article  Google Scholar 

  • Pétremand G, Chittaro Y, Braaker S, Brenneisen S, Gerner M, Obrist MK, Rochefort S, Szallies A, Moretti M (2017) Ground beetle (Coleoptera: Carabidae) communities on green roofs in Switzerland: synthesis and perspectives. Urban Ecosyst 21:119–132

    Article  Google Scholar 

  • Pétremand G, Bénon D, Rochefort S (2018) Abondance et diversité de l’apifaune (Hymenoptera, Anthophila)des toitures végétalisées de l’agglomération genevoise. Entomo Helvetica 11:105–116

    Google Scholar 

  • Pickett STA, Cadenasso ML, Grove JM, Boone CG, Groffman PM, Irwin E, Kaushal SS, Marshall V, McGrath BP, Nilon CH, Pouyat RV, Szlavecz K, Troy A, Warren P (2011) Urban ecological systems: Scientific foundations and a decade of progress. J Environ Manag 92:331–362. https://doi.org/10.1016/j.jenvman.2010.08.022

    Article  CAS  Google Scholar 

  • Pickett STA, Cadenasso ML, Grove JM, Groffman PM, Band LE, Boone CG, Burch WR, Grimmond CSB, Hom J, Jenkins JC, Law NL, Nilon CH, Pouyat RV, Szlavecz K, Warren PS, Wilson MA (2008) Beyond urban legends: An emerging framework of urban ecology, as illustrated by the Baltimore ecosystem study. BioScience 58:139–150. https://doi.org/10.1641/B580208

    Article  Google Scholar 

  • R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.Rproject.org/

  • Rosenzweig ML (2003) Reconciliation ecology and the future of species diversity. Oryx 37:194–205

    Article  Google Scholar 

  • Sattler T, Obrist MK, Duelli P, Moretti M (2011) Urban arthropod communities: Added value or just a blend of surrounding biodiversity?. Landsc Urban Plan 103 (3-4):347–361

  • Srivastava DS (2006) Habitat structure, trophic structure and ecosystem function: interactive effects in a bromeliad-insect community. Oecologia 149:493–504

    Article  Google Scholar 

  • Starry O, Gonsalves S, Ksiazek-Mikenas K, MacIvor JS, Gardner M, Szallies A, Brenneisen S (2018) A global comparison of community composition on green roofs and the potential for homogenization. Urban Naturalist 1:1–15

    Google Scholar 

  • Starry O (2020) Portland Ecoroof Map. https://homeecologyresearch.com/ecoroof-map. Accessed 29 Nov 2020

  • St. Pierre JI, Kovalenko K (2014) Effect of habitat complexity attributes on species richness. Ecosphere 5(2):1–10. https://doi.org/10.1890/ES13-00323.1

    Article  Google Scholar 

  • Sunderland K, Lovei G, Fenlon J (1995) Diets and Reproductive Phenologies of the Introduced Ground Beetles Harpalus-Affinis and Clivina-Australasiae (Coleoptera, Carabidae) in New-Zealand. Aust J Zool 43:39–50

    Article  Google Scholar 

  • Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. J Biogeogr 31(1):79–92. https://doi.org/10.1046/j.0305-0270.2003.00994.x

    Article  Google Scholar 

  • Tonietto R, Fant J, Ascher J, Ellis K, Larkin D (2011) A comparison of bee communities of Chicago green roofs, parks and prairies. Landsc Urban Plan 103:102–108. https://doi.org/10.1016/j.landurbplan.2011.07.004

    Article  Google Scholar 

  • Tscharntke T, Steffan-Dewenter I, Kruess A, Theis C (2002) Characteristics of insect populations on habitat fragments: A mini review. Ecol Res 17:229–239

    Article  Google Scholar 

  • United Nations, Department of Economic and Social Affairs, Population Division (2016) The World’s Cities in 2016 – Data Booklet (ST/ESA/ SER.A/392)

  • van Klink R, Bowler DE, Gongalsky KB, Swengel AB, Gentile A, Chase JM (2020) Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368 (6489):417–420

  • Ward DF, New TR, Yen AL (2001) Effects of pitfall trap spacing on the abundance, richness and composition of invertebrate catches. J Insect Conserv 5:47–53. https://doi.org/10.1023/A:1011317423622

    Article  Google Scholar 

  • Williams NSG, Lundholm J, MacIvor JS (2014) FORUM: Do green roofs help urban biodiversity conservation? J Appl Ecol 51:1643–1649. https://doi.org/10.1111/1365-2664.12333

    Article  Google Scholar 

  • Wilson EO (1987) The Little Things That Run the world* (The Importance and Conservation of Invertebrates). Conserv Biol 1 (4):344–346

  • Woodcock BA (2005) Pitfall trapping in ecological studies. In: Insect sampling in forest ecosystems S.R. Leather, J.H. Lawton and G.E. Likens (Eds.) Malden, Massachusetts: Blackwell Scientific, Ltd

Download references

Acknowledgements

This research was partially supported by a Sigma Xi Grant in Aid of Research and an Edward D. and Olive C. Bushby Scholarship. The authors would like to thank Dr. Andrew Moldenke (Oregon State University, retired) for his assistance in assigning beetle feeding groups; Drs. Catherine de Rivera and Amy Larson (Portland State University) for their graduate advisorship of Ms. Gonsalves, advice, and critical readings of early versions of this manuscript; and Dr. Susan Masta (Portland State University) for her advice and adoption of the green roof spiders we collected. We thank the following individuals for contributing to lab and field work: Daniel Dayrit, Aramee Diethelm, Maggie Gardner, Whitney McClees, Danielle Miles, Konrad Miziolek, Matt Przyborski, Vanessa Robertson-Rojas, Jacob Stone, Jessica Szabo, Amy Truitt. Additionally, Ms. Gonsalves would like to thank all members of the de Rivera-Larson lab for their helpful discussions and peer review during the course of this work.

Funding

This research was partially supported by Sigma Xi Grants in Aid of Research and an Edward D. and Olive C. Bushby Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Sampling methods were developed by Stephan Brenneisen. Material preparation and data collection were performed by Sydney Gonsalves and Olyssa Starry. Data analysis was performed by Sydney Gonsalves. Taxonomic identification was performed by Alex Szallies. The first draft of the manuscript was written by Sydney Gonsalves and reviewed by Olyssa Starry. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sydney Gonsalves.

Ethics declarations

Ethics approval

None was required for this research.

Consent to participate

None was required for this research.

Consent for publication

All authors gave consent to submit for publication.

Conflicts of interest

The authors have none to disclose.

Additional information

The original version of this article was revised: The image for Figure 1 was incorrect.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 25 KB)

Supplementary file2 (DOCX 40 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonsalves, S., Starry, O., Szallies, A. et al. The effect of urban green roof design on beetle biodiversity. Urban Ecosyst 25, 205–219 (2022). https://doi.org/10.1007/s11252-021-01145-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-021-01145-z

Keywords

Navigation