Skip to main content
Log in

Genetic diversity and relatedness of a recently established population of eastern coyotes (Canis latrans) in New York City

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

Little is known about the relatedness structure of carnivores living in urban areas, where green spaces may vary in size and resource availability. We examined the minimum population size, relatedness structure, and genetic diversity of a recently established population of eastern coyotes (Canis latrans) inhabiting New York City (NYC). The population has been established for approximately 25 years, and sample collection for genetic analysis has been ongoing since 2010. We genotyped 234 scat, eight tissue, and three blood samples at nine microsatellite loci. We identified 45 individual coyotes with a male-biased sex ratio of 2.2:1. We also found moderate to high levels of genetic diversity, with average observed heterozygosity of 0.779 and mean number of alleles per locus of 7.8. Most of the green spaces surveyed supported a single group of closely related coyotes in each. Relatedness comparisons between parks also indicated that coyotes compared across different parks were also closely related. We identified two unrelated mated pairs and found no support for polygamy. The high incidence of relatedness suggests that the coyote population is descended from a small number of founding individuals. Additionally, we genetically recaptured several coyotes, including one individual sampled in the Bronx and in Queens, with a median of 103 days between resampling. This result indicates that the coyotes are persisting in some of the isolated greenspaces of New York City and able to move successfully between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andelt W (1985) Behavioral ecology of coyotes in south Texas. Wildl Monogr 94:3–45

    Google Scholar 

  • Atkinson KT, Shackleton DM (1991) Coyote, Canis latrans, ecology in a rural-urban environment. Can Field-Nat 105:49–54

    Google Scholar 

  • Atwood TC (2006) The influence of habitat patch attributes on coyote group size and interaction in a fragmented landscape. Can J Zool 84:80–87

    Article  Google Scholar 

  • Atwood TC, Weeks H, Gehring T (2004) Spatial ecology of coyotes along a suburban-to-rural gradient. J Wildl Manag 68:1000–1009

    Article  Google Scholar 

  • Bateman PW, Fleming PA (2012) Big city life: carnivores in urban environments. J Zool 287:1–23

    Article  Google Scholar 

  • Bekoff M, Gese EM (2003) Coyote (Canis latrans). In: Feidhamer GA, Thompson BC, Chapman JA (eds) Wild mammals of North America: biology, management, and conservation, 2nd edn. Johns Hopkins University Press, Baltimore, pp 467–481

    Google Scholar 

  • Bekoff M, Wells MC (1986) Social ecology and behavior of coyotes. Adv Stud Behav 16:251–338

    Article  Google Scholar 

  • Bekoff M, Daniels TJ, Gittleman JL (1984) Life history patterns and the comparative social ecology of carnivores. Annu Rev Ecol Syst 15:191–232

    Article  Google Scholar 

  • Blair RB (1996) Land use and avian species diversity along an urban gradient. Ecol Appl 6:506–519

    Article  Google Scholar 

  • Bowen WD, Cowan IM (1980) Scent marking in coyotes. Can J Zool 58:473–480

    Article  Google Scholar 

  • Bozarth CA, Gardner B, Rockwood LL, Maldonado J (2015) Using fecal DNA and spatial capture – recapture to characterize a recent coyote colonization. Northeast Nat 22:144–162

    Article  Google Scholar 

  • Bradley CA, Altizer S (2007) Urbanization and the ecology of wildlife diseases. Trends Ecol Evol 22:95–102

    Article  PubMed  Google Scholar 

  • Chaves SL, Dias I, Pomilla C (2010) Extraction of genomic DNA from carnivore fecal samples using QIAamp DNA stool mini kit. http://www.amnh.org/content/download/69690/1196529/version/1/file/2010_stool_extraction_protocol.pdf. Accessed 5 May 2015

  • Crawford KM, Whitney KD (2010) Population genetic diversity influences colonization success. Mol Ecol 19:1253–1263

    Article  CAS  PubMed  Google Scholar 

  • Csilléry K, Johnson T, Beraldi D, Clutton-Brock T, Coltman D, Hansson B, Spong G, Pemberton JM (2006) Performance of marker-based relatedness estimators in natural populations of outbred vertebrates. Genetics 173:2091–2101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dakin E, Avise J (2004) Microsatellite null alleles in parentage analysis. Heredity 93:504–509

    Article  CAS  PubMed  Google Scholar 

  • Damm DL, Armstrong JB, Arjo WM, Piaggio AJ (2015) Assessment of population structure of coyotes in east-Central Alabama using microsatellite DNA. Southeast Nat 14:106–122

    Article  Google Scholar 

  • DeBarba M, Adams JR, Goldberg CS, Stansbury CR, Arias D, Cisneros R, Waits LP (2014) Molecular species identification for multiple carnivores. Conserv Genet Resour 6:821–824

    Article  Google Scholar 

  • DeCandia AL, Henger CS, Krause A, Gormezano LJ, Weckel M, Nagy C, Munshi-south J, VonHoldt B (2019) Genetics of urban colonization: neutral and adaptive variation in coyotes (Canis latrans) inhabiting the New York metropolitan area. J Urban Ecol 5:1–12

    Article  Google Scholar 

  • ESRI (2016) ArcGIS desktop: release 10.6.1. Environmental Systems Research Institute, Redlands

    Google Scholar 

  • Francisco LV, Langston AA, Mellersh CS, Neal CL, Ostrander EA (1996) A class of highly polymorphic tetranucleotide repeats for canine genetic mapping. Mamm Genome 7:359–362

    Article  CAS  PubMed  Google Scholar 

  • Gehrt SD (2006) Urban coyote ecology and management: The Cook County, Illinois Coyote Project. Ohio State University Extension Bulletin 929:1–32

  • Gehrt SD, Riley SPD (2010) Coyotes (Canis latrans). In: Gehrt SD, Riley SPD, Cypher BL (eds) Urban carnivores: ecology, conflict, and conservation. Johns Hopkins University Press, Baltimore, pp 78–95

    Google Scholar 

  • Gehrt SD, Anchor C, White LA (2009) Home range and landscape use of coyotes in a metropolitan landscape: conflict or coexistence? J Mammal 90:1045–1057

    Article  Google Scholar 

  • Gehrt SD, Brown JL, Anchor C (2011) Is the urban coyote a misanthropic synanthrope? The case from Chicago. Cities Environ 4:1–23

  • Gliwicz J, Goszczynski J, Luniak M (1994) Characteristic features of animal populations under synurbanization - the case of the blackbird and of the striped field mouse. Mem Zoologi 49:237–244

    Google Scholar 

  • Godoy E, Norén K, Angerbjӧrn A (2018) Mating patterns in an inbred Arctic carnivore. Polar Biol 41:945–951

    Article  Google Scholar 

  • Gompper M (2002) Top carnivores in the suburbs? Ecological and conservation issues raised by colonization of North-Eastern North America by coyotes. BioScience 52:185–190

    Article  Google Scholar 

  • Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28:1140–1162

    Article  Google Scholar 

  • Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science 319:756–760

    Article  CAS  PubMed  Google Scholar 

  • Grinder MI, Krausman PR (2001) Home range, habitat use, and nocturnal activity of coyotes in an urban environment. J Wildl Manag 65:887–898

    Article  Google Scholar 

  • Guyon R, Lorentzen TD, Hitte C, Kim L, Cadieu E, Parker HG, Quignon P, Lowe JK, Renier C, Gelfenbeyn B, Vignaux F, DeFrance H, Gloux S, Mahairas GG, André C, Galibert F, Ostrander EA (2003) A 1-Mb resolution radiation hybrid map of the canine genome. Proc Natl Acad Sci U S A 100:5296–5301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison DJ (1992) Dispersal characteristics of juvenile coyotes in Maine. J Wildl Manag 56:128–138

    Article  Google Scholar 

  • Hennessy CA, Dubach J, Gehrt SD (2012) Long-term pair bonding and genetic evidence for monogamy among urban coyotes (Canis latrans). J Mammal 93:732–742

    Article  Google Scholar 

  • Heppenheimer E, Cosio DS, Brzeski KE, Caudill D, Van Why K, Chamberlain MJ, Hinton JW, Vonholdt B (2018) Demographic history influences spatial patterns of genetic diversity in recently expanded coyote (Canis latrans) populations. Heredity 120:183–195

    Article  PubMed  Google Scholar 

  • Hody JW, Kays R (2018) Mapping the expansion of coyotes (Canis latrans) across North and Central America. ZooKeys 97:81–97

    Article  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Holmes NG, Dickens HF, Parker HL, Binns MM, Mellersh CS, Sampson J (1995) Eighteen canine microsatellites. Anim Genet 26:132–133

    Article  CAS  PubMed  Google Scholar 

  • Homer CG, Dewitz GA, Yang L, Jin S, Danielson P, Xian G, Coulson J, Herold ND, Wickham JD, Megown K (2015) Completion of the 2011 National Land Cover Database for the conterminous United States-representing a decade of land cover change information. Photogramm Eng Remote Sens 81:345–354

    Google Scholar 

  • Hulme-Beaman A, Dobney K, Cucchi T, Searle JB (2016) An ecological and evolutionary framework for commensalism in anthropogenic environments. Trends Ecol Evol 31:633–645

    Article  PubMed  Google Scholar 

  • Johnson RF (2001) Synanthropic birds of North America. In: Marzluff JM, Bowman R, Donnelly R (eds) Avian ecology and conservation in an urbanizing world. Springer, Boston

    Google Scholar 

  • Johnson MTJ, Munshi-South J (2017) Evolution of life in urban environments. Science 358:1–11

    Article  CAS  Google Scholar 

  • Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555

    Article  PubMed  Google Scholar 

  • Kalinowski ST, Wagner AP, Taper ML (2006) ML-RELATE: a computer program for maximum likelihood estimation of relatedness and relationship. Mol Ecol Notes 6:576–579

    Article  CAS  Google Scholar 

  • Kamler JF, Gipson PS (2000) Space and habitat use by resident and transient coyotes. Can J Zool 78:2106–2111

    Article  Google Scholar 

  • Kays RW, Gompper ME, Ray JC (2008) Landscape ecology of eastern coyotes based on large-scale estimates of abundance. Ecol Appl 18:1014–1027

    Article  PubMed  Google Scholar 

  • Kearse MM, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S et al (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Kierepka EM, Kilgo JC, Rhodes OE (2017) Effect of compensatory immigration on the genetic structure of coyotes. J Wildl Manag 81:1394–1407

    Article  Google Scholar 

  • Kohn MH, York EC, Kamradt DA, Haught G, Sauvajot RM, Wayne RK (1999) Estimating population size by genotyping faeces. Proc R Soc B 266:657–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraemer P, Gerlach G (2017) Demerelate: calculating interindividual relatedness for kinship analysis based on codominant diploid genetic markers using R. Mol Ecol Resour 17:1371–1377

    Article  CAS  PubMed  Google Scholar 

  • Lonsinger RC, Waits LP (2015) ConGenR: a rapid determination of consensus genotypes and estimates of genotyping errors from replicated genetic samples. Conserv Genet Resour 7:841–843

    Article  Google Scholar 

  • Lukasik VM, Alexander SM (2011) Human-coyote interactions in Calgary, Alberta. Hum Dimens Wildl 16:114–127

    Article  Google Scholar 

  • Martin D (1999) Wild (and unleashed) coyote is captured in Central Park. New York Times, 148:51480, p B1

  • McDonnell MJ, Hahs AK (2015) Adaptation and adaptedness of organisms to urban environments. Annu Rev Ecol Evol Syst 46:261–280

    Article  Google Scholar 

  • McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260

    Article  Google Scholar 

  • McNutt JW (1996) Sex-biased dispersal in African wild dogs, Lycaon pictus. Anim Behav 52:1067–1077

    Article  Google Scholar 

  • Milligan BG (2003) Maximum-likelihood estimation of relatedness. Genetics 163:1153–1167

    PubMed  PubMed Central  Google Scholar 

  • Mitchell N, Strohbach MW, Pratt R, Finn WC, Strauss EG (2015) Space use by resident and transient coyotes in an urban-rural landscape mosaic. Wildl Res 42:461–469

    Article  Google Scholar 

  • Moore GC, Millar JS (1984) A comparative study of colonizing and longer established eastern coyote populations. J Wildl Manag 48:691–699

    Article  Google Scholar 

  • Morton NE (2002) Linkage disequilibrium. In: Brenner S, Miller JH (eds) Encyclopedia of genetics, Vol 1. Academic Press, p 1105

  • Mumma MA, Soulliere CE, Mahoney SP, Waits LP (2014) Enhanced understanding of predator-prey relationships using molecular methods to identify predator species, individual and sex. Mol Ecol Resour 14:100–108

    Article  PubMed  Google Scholar 

  • Nagy CM, Koestner C, Clemente S, Weckel M (2016) Occupancy and breeding status of coyotes in New York City parks, 2011 to 2014. Urban Nat 9:1–19

  • Nagy C, Weckel M, Monzón J, Duncan N, Rosenthal MR (2017) Initial colonization of long island, New York by the eastern coyote, Canis latrans (Carnivora, Canidae), including first record of breeding. Check List 13:901–907

    Article  Google Scholar 

  • Nellis CH, Keith LB (1976) Population dynamics of coyotes in Central Alberta, 1964-68. J Wildl Manag 40:389–399

    Article  Google Scholar 

  • Nowak DJ, Greenfield EJ (2012) Tree and impervious cover in the United States. Landsc Urban Plan 107:21–30

    Article  Google Scholar 

  • NYC Parks (2019) About the New York City Department of Parks. Available at www.nycgovparks.org/about (Accessed March 2, 2019)

  • Ostrander EA, Sprague GF Jr, Rine J (1993) Identification and characterization of dinucleotide repeat (CA)n markers for genetic mapping in dog. Genomics 16:207–213

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research--an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Prugh LR, Ritland CE, Arthur SM, Krebs CJ (2005) Monitoring coyote population dynamics by genotyping faeces. Mol Ecol 14:1585–1596

    Article  CAS  PubMed  Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275

    Article  PubMed  Google Scholar 

  • Quinn T (1997) Coyote (Canis latrans) habitat selection in urban areas of western Washington via analysis of routine mouvements. Northwest Sci 71:289–297

    Google Scholar 

  • R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  • Randall DA, Pollinger JP, Wayne RK, Tallents LA, Johnson PJ (2007) Inbreeding is reduced by female-biased dispersal and mating behavior in Ethiopian wolves. Behav Ecol 18:579–589

    Article  Google Scholar 

  • Riley SPD, Sauvajot RM, Fuller TK, York EC, Kamradt DA, Bromley C, Wayne R (2003) Effects of urbanization and habitat fragmentation on bobcats and coyotes in southern California. Conserv Biol 17:566–576

    Article  Google Scholar 

  • Riley SPD, Pollinger JP, Sauvajot RM, York EC, Bromley C, Fuller TK, Wayne RK (2006) A southern California freeway is a physical and social barrier to gene flow in carnivores. Mol Ecol 15:1733–1741

    Article  CAS  PubMed  Google Scholar 

  • Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Ryden H (1974) The “lone” coyote likes family life. Natl Geogr 146:279–294

  • Sacks BN, Brown SK, Ernest HB (2004) Population structure of California coyotes corresponds to habitat-specific breaks and illuminates species history. Mol Ecol 13:1265–1275

    Article  CAS  PubMed  Google Scholar 

  • Sacks BN, Ernest HB, Boydston EE (2006) San Francisco’s Golden Gate: a bridge between historically distinct coyote (Canis latrans) populations. West N Am Naturalist 66:263–264

    Article  Google Scholar 

  • Seddon JM (2005) Canid-specific primers for molecular sexing using tissue or non-invasive samples. Conserv Genet 6:147–149

    Article  Google Scholar 

  • Serieys LEK, Lea A, Pollinger JP, Riley SPD, Wayne RK (2015) Disease and freeways drive genetic change in urban bobcat populations. Evol Appl 8:75–92

    Article  PubMed  Google Scholar 

  • Seto KC, Güneralp B, Hutyra LR (2012) Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc Natl Acad Sci U S A 109:16083–16088

    Article  PubMed  PubMed Central  Google Scholar 

  • Slatkin M (1977) Gene flow and genetic drift in a species subject to frequent local extinctions. Theor Popul Biol 12:253–262

    Article  CAS  PubMed  Google Scholar 

  • Slatkin M (2008) Linkage disequilibrium - understanding the evolutionary past and mapping the medical future. Nat Rev Genet 9:477–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparkman AM, Adama JR, Steury TD, Waits LP, Murray DL (2012) Pack social dynamics and inbreeding avoidance in the cooperatively breeding red wolf. Behav Ecol 23:1186–1194

    Article  Google Scholar 

  • Stenglein JL, Waits LP, Ausband DE, Zager P, Mack CM (2010) Efficient, noninvasive genetic sampling for monitoring reintroduced wolves. J Wildl Manag 74:1050–1058

    Article  Google Scholar 

  • Taberlet P, Luikart G, Waits LP (1999) Noninvasive genetic sampling: look before you leap. Trends Ecol Evol 14:323–327

    Article  CAS  PubMed  Google Scholar 

  • Tigas LA, Van Vuren DH, Sauvajot RM (2002) Behavioral responses of bobcats and coyotes to habitat fragmentation and corridors in an urban environment. Biol Conserv 108:299–306

    Article  Google Scholar 

  • Toomey AH, Weckel M, Nagy C, Gormezano LJ, Silver S (2012) The last frontier: eastern coyotes in New York City. The Wildl Prof 6:54–57

  • Trombulak SD, Frissell CA (2000) Review of ecological effects of roads on terrestrial and aquatic communities. Conserv Biol 14:18–30

    Article  Google Scholar 

  • United Nations (2018) World population prospects: the 2018 revision. New York, NY https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf. Accessed 7 Feb 2019

  • United States Census Bureau (2018) New York city census. https://www.census.gov/quickfacts/fact/table/newyorkcitynewyork/PST045218. Accessed 29 Jan 2019

  • Valière N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2:377–379

    Google Scholar 

  • Van DeCasteele T, Galbusera P, Matthysen E (2001) A comparison of microsatellite-based pairwise relatedness. Mol Ecol 10:1539–1549

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  CAS  Google Scholar 

  • Waits LP, Paetkau D (2005) Noninvasive genetic sampling tools for wildlife biologists: a review of applications and recommendations for accurate data collection. J Wildl Manag 69:1419–1433

    Article  Google Scholar 

  • Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256

    Article  CAS  PubMed  Google Scholar 

  • Way JG, Auger PJ, Ortega IM, Strauss EG (2001) Eastern coyote denning behavior in an anthropogenic environment. Northeast Wildl 56:18–30

  • Way JG, Ortega IM, Auger PJ (2002) Eastern coyote home range, territoriality, and sociality on urbanized Cape Cod. Northeast Wildl 57:1–18

  • Way JG, Rutledge L, Wheeldon T, White BN (2010) Genetic characterization of eastern “coyotes” in eastern Massachusetts. Northeast Nat 17:189–204

    Article  Google Scholar 

  • Weckel M, Bogan DA, Burke RL, Nagy C, Green T (2015) Coyotes go “ bridge and tunnel ”: a narrow opportunity to study the socio-ecological impacts of coyote range expansion on Long Island, NY pre- and post-arrival. Cities and the Environment 8:1–28

    Google Scholar 

  • Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York

    Book  Google Scholar 

  • Wultsch C, Waits LP, Hallerman EM, Kelly MJ (2015) Optimizing collection methods for noninvasive genetic sampling of neotropical felids. Wildl Soc Bull 39:403–412

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Gotham Coyote Project (GCP; New York City, New York) for providing the samples for this study. We thank the NYC Department of Parks and Recreation Wildlife Unit for assistance with sample collection. Funding for this study was provided by the Clare Boothe Luce Graduate Fellowship Program, the Mianus River Gorge Research Assistantship Program, the National Science Foundation Research Experience for Undergraduates (REU) Program (Award #1063076), and the Louis Calder Graduate Student Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol S. Henger.

Electronic supplementary material

ESM 1

(PDF 173 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henger, C.S., Herrera, G.A., Nagy, C.M. et al. Genetic diversity and relatedness of a recently established population of eastern coyotes (Canis latrans) in New York City. Urban Ecosyst 23, 319–330 (2020). https://doi.org/10.1007/s11252-019-00918-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-019-00918-x

Keywords

Navigation