Skip to main content
Log in

I’m not like everybody else: urbanization factors shaping spatial distribution of native and invasive ants are species-specific

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

Urbanization is a major global change inducing complex and multiple modifications of landscapes and ecosystems. The spatial distributions of organisms experiencing these modifications will likely shift specifically, depending on each species’ response to each environmental modification induced by urbanization. We sampled two ant genera (Lasius and Tetramorium) at 1248 locations along an urbanization gradient in Lyon, France and used high resolution spatial layers for 18 spatial (e.g., open habitat fragmentation, bioclimatic data and surface temperatures) and temporal (e.g., comparison of Normalized Difference Vegetation Index between 1986 and 2015) environmental variables associated with urbanization. Coupling two different analytical methods (Outlying Mean Index and Boosted Regression Trees), we showed that each species’ distribution was influenced by its own combination of environmental factors. Two morphologically cryptic Tetramorium species (T. sp.E and T. sp.U2) were both highly abundant but with opposite responses to urbanization: while T. sp.E was favored by urbanized habitat, T. sp.U2 avoided urbanized areas. Among Lasius species, we detected 63 occurrences of the invasive ant Lasius neglectus, the distribution of which was favored only by embankments along roads. We found that, even at this reduced spatial scale, climatic effects influenced most species and interacted with urbanization factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alpert P, Bone E, Holzapfel C (2000) Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspect Plant Ecol Evol Syst 3:52–66

    Article  Google Scholar 

  • Angold PG, Sadler JP, Hill MO, Pullin A, Rushton S, Austin K, Small E, Wood B, Wadsworth R, Sanderson R, Thompson K (2006) Biodiversity in urban habitat patches. Sci Total Environ 360:196–204

    Article  CAS  PubMed  Google Scholar 

  • Bang C, Faeth SH (2011) Variation in arthropod communities in response to urbanization: seven years of arthropod monitoring in a desert city. Landsc Urban Plan 103:383–399

    Article  Google Scholar 

  • Blair RB (1996) Land use and avian species diversity along an urban gradient. Ecol Appl 6:506

    Article  Google Scholar 

  • Boulton AM, Davies KF, Ward PS (2005) Species richness, abundance, and composition of ground-dwelling ants in northern California grasslands: role of plants, soil, and grazing. Environ Entomol 34:96–104

    Article  Google Scholar 

  • Brown LR, Gregory MB, May JT (2009) Relation of urbanization to stream fish assemblages and species traits in nine metropolitan areas of the United States. Urban Ecosyst 12:391–416

    Article  Google Scholar 

  • Buczkowski G, Bennett G (2008) Seasonal polydomy in a polygynous supercolony of the odorous house ant, Tapinoma sessile. Ecol Entomol 33:780–788

    Google Scholar 

  • Carpintero S, Reyes-López J (2014) Effect of park age, size, shape and isolation on ant assemblages in two cities of southern Spain. Entomol Sci 17:41–51

    Article  Google Scholar 

  • Casquet J, Thebaud C, Gillepie RG (2012) Chelex without boiling, a rapid and easy technique to obtain stable amplifiable DNA from small amounts of ethanol-stored spiders. Mol Ecol Resour 12:136–141

    Article  CAS  PubMed  Google Scholar 

  • Clarke KM, Fisher BL, LeBuhn G (2008) The influence of urban park characteristics on ant (hymenoptera, Formicidae) communities. Urban Ecosyst 11:317–334

    Article  Google Scholar 

  • Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46

    Article  Google Scholar 

  • Conole LE (2014) Degree of adaptive response in urban tolerant birds shows influence of habitat-of-origin. PeerJ 2:e306

    Article  PubMed  PubMed Central  Google Scholar 

  • Core Team R (2014) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Craufurd PQ, Wheeler TR (2009) Climate change and the flowering time of annual crops. J Exp Bot 60:2529–2539

    Article  CAS  PubMed  Google Scholar 

  • Croci S, Butet A, Georges A, Aguejdad R, Clergeau P (2008) Small urban woodlands as biodiversity conservation hot-spot: a multi-taxon approach. Landsc Ecol 23:1171–1186

    Article  Google Scholar 

  • Czechowski W, Vepsäläinen K, Radchenko A (2013) Ants on skerries: Lasius assemblages along primary succession. Insect Soc 60:147–153

  • DeMers MN (1993) Roadside ditches as corridors for range expansion of the western harvester ant (Pogonomyrmex occidentalis Cresson). Landsc Ecol 8:93–102

    Article  Google Scholar 

  • Diallo-Dudek J, Lacaze B, Comby J (2015) Conference: 2015 joint urban remote sensing event (JURSE 2015). Institute of electrical and electronics engineers (IEEE):375p

  • Doledec S, Chessel D, Gimaret-Carpentier C (2000) Niche separation in community analysis: a new method. Ecology 81:2914–2927

    Article  Google Scholar 

  • Dousset B, Gourmelon F, Laaidi K, Zeghnoun A, Giraudet E, Bretin P, Mauri E, Vandentorren S (2011) Satellite monitoring of summer heat waves in the Paris metropolitan area. Int J Climatol 31:313–323

    Article  Google Scholar 

  • Dray S, Dufour A (2007) The ade 4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20

    Article  Google Scholar 

  • Eeva T, Sorvari J, Koivunen V (2004) Effects of heavy metal pollution on red wood ant (Formica s. str.) populations. Environ Pollut 132:533–539

  • Elith J, Graham CH, Anderson RP, et al. (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813

    Article  CAS  PubMed  Google Scholar 

  • Espadaler X, Bernal V (2015) Lasius neglectus, a polygynous, sometimes invasive ant. http://www.creaf.uab.es/xeg/lasius/Ingles/distribution.htm. Last access: January 25, 2016.

  • Espadaler X, Tartally A, Schultz R, et al. (2007) Regional trends and preliminary results on the local expansion rate in the invasive garden ant, Lasius neglectus (Hymenoptera, Formicidae). Insect Soc 54:293–301

  • Flinn KM, Vellend M (2005) Recovery of forest plant communities in post agricultural landscapes. Front Ecol Environ 3:243–250

    Article  Google Scholar 

  • Gaston KJ (2010) Urban ecology. In: Gaston KJ (ed) Urban ecology. Cambridge University Press, Cambridge, pp. 1–9

    Chapter  Google Scholar 

  • Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008a) Global change and the ecology of cities. Science 319:756–760

    Article  CAS  PubMed  Google Scholar 

  • Grimm NB, Foster D, Groffman P, Grove JM, Hopkinson CS, Nadelhoffer KJ, Pataki DE, Peters DPC (2008b) The changing landscape: ecosystem responses to urbanization and pollution across climatic and societal gradients. Front Ecol Environ 6:264–272

    Article  Google Scholar 

  • Guénard B, Cardinal-De Casas A, Dunn RR (2015) High diversity in an urban habitat: are some animal assemblages resilient to long-term anthropogenic change? Urban Ecosyst 18:449–463

    Article  Google Scholar 

  • Hansen AJ, Knight RL, Marzluff JM, Powell S, Brown K, Gude PH, Jones K (2005) Effects of exurban development on biodiversity: patterns, mechanisms, and research needs. Ecol Appl 15:1893–1905

    Article  Google Scholar 

  • Heterick BE, Lythe M, Smithyman C (2013) Urbanisation factors impacting on ant (Hymenoptera: Formicidae) biodiversity in the Perth metropolitan area, Western Australia: two case studies. Urban Ecosyst 16:145–173

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hijmans RJ, Phillips S, Leathwick J, Elith J (2011) Package ‘dismo’. Available online at: http://cran.r-project.org/web/packages/dismo/index.html.

  • Hodkinson DJ, Thompson K (1997) Plant dispersal: the role of man. J Appl Ecol 34:1484–1496

    Article  Google Scholar 

  • Infoclimat.fr (2011) http://www.infoclimat.fr/stations-meteo/climato-moyennes-records.php?staid=07480&from=1981&to=2010&redirect=1. Last access: January 25, 2016.

  • James P, Bound D (2009) Urban morphology types and open space distribution in urban core areas. Urban Ecosyst 12:417–424

    Article  Google Scholar 

  • Jenerette GD, Potere D (2010) Global analysis and simulation of land-use change associated with urbanization. Landsc Ecol 25:657–670

    Article  Google Scholar 

  • Joseph LN, Field SA, Wilcox C, Possingham HP (2006) Presence-absence versus abundance data for monitoring threatened species. Conserv Biol 20:1679–1687

    Article  PubMed  Google Scholar 

  • Kark S, Iwaniuk A, Schalimtzek A, Banker E (2007) Living in the city: can anyone become an urban exploiter’? J Biogeogr 34:638–651

    Article  Google Scholar 

  • King TG, Green SC (1995) Factors affecting the distribution of pavement ants (Hymenoptera: Formicidae) in Atlantic coast. Entomol News 106:224–228

    Google Scholar 

  • King JR, Tschinkel WR, Ross KG (2009) A case study of human exacerbation of the invasive species problem: transport and establishment of polygyne fire ants in Tallahassee, Florida, USA. Biol Invasions 11:373–377

    Article  Google Scholar 

  • Leathwick JR, Elith J, Chadderton WL, Rowe D, Hastie T (2008) Dispersal, disturbance and the contrasting biogeographies of New Zealand’s diadromous and non-diadromous fish species. J Biogeogr 35:1481–1497

    Article  Google Scholar 

  • McDonnell MJ, Hahs AK (2008) The use of gradient analysis studies in advancing our understanding of the ecology of urbanizing landscapes: current status and future directions. Landsc Ecol 23:1143–1155

    Article  Google Scholar 

  • McIntyre NE (2000) Ecology of urban arthropods: a review and a call to action. Ann Entomol Soc Am 93:825–835

    Article  Google Scholar 

  • McKinney ML (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst 11:161–176

    Article  Google Scholar 

  • Menke SB, Guénard B, Sexton JO, Weiser MD, Dunn RR, Silverman J (2011) Urban areas may serve as habitat and corridors for dry-adapted, heat tolerant species; an example from ants. Urban Ecosyst 14:135–163

    Article  Google Scholar 

  • Nagy C, Tartally A, Vilisics F, et al. (2009) Effects of the invasive garden ant, Lasius neglectus VAN LOON, BOOSMA & ANDRÁS-FALVY, 1990 (Hymenoptera: Formicidae), on arthropod assemblages: pattern analyses in the type supercolony. Myrmecological News 12:171–181

    Google Scholar 

  • Niemelä J, Kotze DJ (2009) Carabid beetle assemblages along urban to rural gradients: a review. Landsc Urban Plan 92:65–71

    Article  Google Scholar 

  • Oleson KW, Monaghan A, Wilhelmi O, Barlage M, Brunsell N, Feddema J, Hu L, Steinhoff DF (2015) Interactions between urbanization, heat stress, and climate change. Clim Chang 129:525–541

    Article  Google Scholar 

  • Pećarević M, Danoff-Burg J, Dunn RR (2010) Biodiversity on Broadway - enigmatic diversity of the societies of ants (Formicidae) on the streets of New York City. PLoS One 5:1–8

    Google Scholar 

  • Peck SL, McQuaid B, Campbell CL (1998) Using ant species (Hymenoptera: Formicidae) as a biological indicator of agroecosystem condition. Environ Entomol 27:1102–1110

    Article  Google Scholar 

  • Philpott SM, Cotton J, Bichier P, Friedrich RL, Moorhead LC, Uno S, Valdez M (2014) Local and landscape drivers of arthropod abundance, richness, and trophic composition in urban habitats. Urban Ecosyst 17:513–532

    Article  Google Scholar 

  • Poff NL (1997) Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J North Am Benthol Soc 16:391

    Article  Google Scholar 

  • Prasad AM, Iverson LR, Peters MP, Bossenbroek JM, Matthews SN, Sydnor TD, Schwartz MW (2010) Modeling the invasive emerald ash borer risk of spread using a spatially explicit cellular model. Landsc Ecol 25:353–369

    Article  Google Scholar 

  • Radinger J, Hölker F, Horký P, Slavik OJ, Dendoncker N, Wolter C (2015) Synergistic and antagonistic interactions of future land use and climate change on river fish assemblages. Glob Chang Biol 22:1505–1522

    Article  Google Scholar 

  • Rouifed S, Piola F, Spiegelberger T (2014) Invasion by Fallopia spp. in a French upland region is related to anthropogenic disturbances. Basic Appl Ecol 15:435–443

    Article  Google Scholar 

  • Roura-Pascual N, Brotons L, Peterson AT, Thuiller W (2009) Consensual predictions of potential distributional areas for invasive species: a case study of argentine ants in the Iberian peninsula. Biol Invasions 11:1017–1031

    Article  Google Scholar 

  • Savage AM, Hackett B, Guénard B, Youngsteadt EK, Dunn RR (2015) Fine-scale heterogeneity across Manhattan’s urban habitat mosaic is associated with variation in ant composition and richness. Insect Conserv Divers 8:216–228

    Article  Google Scholar 

  • Schaffers AP, Raemakers IP, Sýkora KV (2012) Successful overwintering of arthropods in roadside verges. J Insect Conserv 16:511–522

    Article  Google Scholar 

  • Schlick-Steiner BC, Steiner FM, Moder K, et al. (2006) A multidisciplinary approach reveals cryptic diversity in western Palearctic Tetramorium ants (Hymenoptera: Formicidae). Mol Phylogenet Evol 40:259–273

    Article  CAS  PubMed  Google Scholar 

  • Seifert B (1991) Lasius platythorax N. Sp. a widespread sibling species of Lasius niger (Hymenoptera: Formicidae). Entomol Gener 16:69–81

    Article  Google Scholar 

  • Seifert B (2007) Die Ameisen Mittel- und Nordeuropas. Lutra Verlags- und Vertriebsgesellschaft, Tauer 368p

  • Shochat E, Warren P, Faeth S, McIntyre NE, Hope D (2006) From patterns to emerging processes in mechanistic urban ecology. Trends Ecol Evol 21:186–191

    Article  PubMed  Google Scholar 

  • Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene-sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc America 87:651–701

    Article  CAS  Google Scholar 

  • Ślipiński P, ZMihorski M, Czechowski W (2012) Species diversity and nestedness of ant assemblages in an urban environment. Eur J Entomol 109:197–206

    Article  Google Scholar 

  • Smith LS, Broyles MEJ, Larzleer HK, Fellowes MDE (2015) Adding ecological value to the urban lawnscape. Insect abundance and diversity in grass-free lawns. Biodivers Conserv 24:47–62

    Article  Google Scholar 

  • Steiner FM, Schlick-Steiner BC, VanDerWal J, et al. (2008) Combined modelling of distribution and niche in invasion biology: a case study of two invasive Tetramorium ant species. Divers Distrib 14:538–545

    Article  Google Scholar 

  • Stewart DR, Walters AW, Rahel FJ (2015) Landscape-scale determinants of native and non-native Great Plains fish distributions. Divers Distrib 22:225–238

    Article  Google Scholar 

  • Stringer LD, Stephens AEA, Suckling DM, Charles JG (2009) Ant dominance in urban areas. Urban Ecosyst 12:503–514

    Article  Google Scholar 

  • Suarez AV, Bolger DT, Case TJ (1998) Effects of fragmentation and invasion on native ant communities in coastal Southern California. Ecology 79:2041–2056

    Article  Google Scholar 

  • Turrini T, Knop E (2015) A landscape ecology approach identifies important drivers of urban biodiversity. Glob Chang Biol 21:1652–1667

    Article  PubMed  Google Scholar 

  • Ugelvig LV, Drijfhout FP, Kronauer DJ, et al. (2008) The introduction history of invasive garden ants in Europe: integrating genetic, chemical and behavioural approaches. BMC Biol 6:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Uno S, Cotton J, Philpott SM (2010) Diversity, abundance, and species composition of ants in urban green spaces. Urban Ecosyst 13:425–441

    Article  Google Scholar 

  • Valery L, Fritz H, Lefeuvre J-C, Simberloff D (2009) Invasive species can also be native... Trends Ecol Evol 24:585–586

    Article  PubMed  Google Scholar 

  • Van Nuland ME, Whitlow WL (2014) Temporal effects on biodiversity and composition of arthropod communities along an urban–rural gradient. Urban Ecosyst 17:1047–1060

    Article  Google Scholar 

  • Vasconcelos PB, Araújo GM, Bruna EM (2014) The role of roadsides in conserving Cerrado plant diversity. Biodivers Conserv 23:3035–3050

    Article  Google Scholar 

  • Vepsäläinen K, Ikonen H, Koivula MJ (2008) The structure of ant assemblages in an urban area of Helsinki, southern Finland. Ann Zool Fennici 45:109–127

    Article  Google Scholar 

  • Verberk WCEP, van Noordwijk CGE, Hildrew AG (2013) Delivering on a promise: integrating species traits to transform descriptive community ecology into a predictive science. Freshw Sci 32:531–547

    Article  Google Scholar 

  • Vergnes A, Le Viol I , Clergeau P (2012) Green corridors in urban landscapes affect the arthropod communities of domestic gardens. Biol Conserv 145:171–178

    Article  Google Scholar 

  • Vonshak M, Gordon DM (2015) Intermediate disturbance promotes invasive ant abundance. Biol Conserv 186:359–367

    Article  Google Scholar 

  • Ward PS (1987) Distribution of the introduced argentine ant (Iridomyrmex humilis) in natural habitats of the lower Sacramento Valley and its effects on the indigenous ant fauna. Hilgardia 55(2):1–16

    Article  Google Scholar 

  • With KA (2002) The landscape ecology of invasive spread. Conserv Biol 16:1192–1203

    Article  Google Scholar 

  • Yamaguchi T (2005) Influence of urbanization on ant distribution in parks of Tokyo and Chiba City, Japan II. Analysis of species. Entomol Sci 8:17–25

    Article  Google Scholar 

  • Youngsteadt E, Henderson RC, Savage AM, Ernst AF, Dunn RR, Frank SD (2014) Habitat and species identity, not diversity, predict the extent of refuse consumption by urban arthropods. Glob Chang Biol 21:1103–1115

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was funded by the Conseil Départemental de l’Isère. This work was supported by the LABEX IMU (ANR-10-LABX-0088) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR). The authors wish to thank the many students and interns who participated in the extensive sampling and identification of ants over the years. Additional thanks to Aurélie Granjon for the first molecular identifications, to Jérôme Prunier, David Eme and Julien Grangier for constructive criticism of the first manuscript drafts. Finally, the authors wish to thank Charles Nilson and an anonymous reviewer who provided useful advices for improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme M. W. Gippet.

Electronic Supplementary Material

Table S1

(DOCX 17 kb)

Table S2

(DOCX 19 kb)

Figure S1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gippet, J.M.W., Mondy, N., Diallo-Dudek, J. et al. I’m not like everybody else: urbanization factors shaping spatial distribution of native and invasive ants are species-specific. Urban Ecosyst 20, 157–169 (2017). https://doi.org/10.1007/s11252-016-0576-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-016-0576-7

Keywords

Navigation