Skip to main content

Advertisement

Log in

Changes through time in soil Collembola communities exposed to urbanization

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

The study aimed to assess if long-term exposure to urbanization changes the structure and composition of soil collembolan communities in urban green components (street lawns and park lawns) and in all urban green. Species diversity metrics, rarefaction, species richness estimators (Chao 1 and ACE) and multivariate analysis were used for the comparison of changes in community structure and diversity pattern over ca 30 years’ time span. Our results clearly demonstrate a shift, through time, in Collembola community composition and structure in an urban ecosystem and confirm that there is a linkage between long-term exposure to urbanization and changes in collembolan communities. Long-term urbanization led to erosion in species diversity and the formation of species-poor communities, species replacement, loss of specialized forms and promoted the invasion of exotic species. However, we show that the time span considered produced significant differences in diversity attribute values for the collembolan communities from street lawns and insignificant differences in park lawns, also we noted lack of significant differences in collembolan abundance across the two urban green components. The observed temporal changes in collembolan communities indicate that their response to disturbances in urban settings and selecting species is shaped by multiple processes. We conclude that more resistant collembolan communities were found over time in less stressed urban greening components such as park lawn soils compared to street lawn soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bengtsson G, Rundgren S (1988) The Gusum case: a brass mill and the distribution of soil Collembola. Can J Zool 66:1518–1526

    Article  Google Scholar 

  • Berg MP, Hemerik L (2004) Secondary succession of terrestrial isopod, centipede, and millipede communities in grasslands under restoration. Biol Fertil Soils 40:163–170

    Article  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Article  Google Scholar 

  • Bowler DE, Buyung-Ali L, Knight TM, Pullin AS (2010) Urban greening to cool towns and cities: a systematic review of the empirical evidence. Landsc Urban Plan 97:147–155

    Article  Google Scholar 

  • Brazel A, Selover N, Vose R, Heiser G (2000) The tale of two climates-Baltimore and phoenix urban LTER sites. Clim Res 15:123–135

    Article  Google Scholar 

  • Bretfeld G (1999) Symphypleona. Synopses on Palaearctic Collembola. Abh Ber Naturkundemus Görlitz 71:1–318

    Google Scholar 

  • Byrne L (2007) Habitat structure: a fundamental concept and framework for urban soil ecology. Urban Ecosyst 10:255–274

    Article  Google Scholar 

  • Carrero JA, Arrizabalaga I, Bustamante J, Goienaga N, Arana G, Madariaga M (2013) Diagnosing the traffic impact on roadside soils through a multianalytical data analysis of the concentration profiles of the traffic-related elements. Sci Total Environ 458–460:427–434

    Article  PubMed  Google Scholar 

  • Chauvat M, Zaitsev AS, Wolters V (2003) Successional changes of Collembola and soil microbiota during forest rotation. Oecologia 137:269–276

    Article  PubMed  Google Scholar 

  • Chojnacki J, Sudnik-Wójcikowska B (1994) Effects of urbanization on the plant cover of Warsaw. Memorabilia Zool 49:115–127

    Google Scholar 

  • Commission V on Genesis, Classification and Cartography of Soils PSSSv (2011) Polish soil classification 5th edition (Systematyka Gleb Polski). Soil Sci Annu (Rocz Glebozn) 62:1–193 (in Polish with English summary)

    Google Scholar 

  • Dao L, Morrison L, Zhang H, Zhang C (2014) Influences of traffic on Pb, Cu and Zn concentrations in roadside soils of an urban park in Dublin, Ireland. Environ Geochem Health 36:333–343

    Article  CAS  PubMed  Google Scholar 

  • Degirmendźić J, Kożuchowski K, Żmudzka E (2002) Circulation determinants of air temperature variability in Poland in the period 1951–2000 (Uwarunkowania cyrkulacyjne zmienności temperatury powietrza w Polsce w okresie 1951–2000). Przegl Geofiz 48:93–98 (in Polish with English summary)

    Google Scholar 

  • Dmuchowski W, Bytnerowicz A (2009) Long-term (1992–2004) record of lead, cadmium, and zinc air contamination in Warsaw, Poland: determination by chemical analysis of moss bags and leaves of Crimean linden. Environ Pollut 157:3413–3421

    Article  CAS  PubMed  Google Scholar 

  • Dunger W, Schlitt B (2011) Tulbergiidae. Synopses on Palaearctic Collembola. Soil Org 83:1–168

    Google Scholar 

  • Effland WR, Pouyat RV (1997) The genesis, classification, and mapping of soils in urban areas. Urban Ecosyst 1:217–228

    Article  Google Scholar 

  • Eitminaviciute I (2006a) Microarthropod communities in anthropogenic urban soils. 1. Structure of microarthropod complexes in soils of roadside lawns. Entomol Rev 86:128–135

    Article  Google Scholar 

  • Eitminaviciute I (2006b) Microarthropod communities in anthropogenic urban soils. 2. Seasonal dynamics of microarthropod abundance in soils at roundabout junctions. Entomol Rev 86:136–146

    Article  Google Scholar 

  • Elton CS (1958) The ecology of invasions by animals and plants. Methuen, London

    Book  Google Scholar 

  • Feyisa GE, Dons K, Meilby H (2014) Efficiency of parks in mitigating urban heat island effect: an example from Addis Ababa. Landsc Urban Plan 123:87–95

    Article  Google Scholar 

  • Fiera C (2009) Biodiversity of Collembola in urban soils and their use as bioindicators for pollution. Pesq Agrop Brasileira 44:868–873

    Article  Google Scholar 

  • Filser J, Mebes KH, Winter K, Lang A, Kampichler C (2002) Long-term dynamics and interrelationships of soil Collembola and microorganisms in an arable landscape following land use change. Geoderma 105:201–221

    Article  Google Scholar 

  • Fjellberg A (1998) The Collembola of Fennoscandia and Denmark. Part I: Poduromorpha. Fauna Entomol Scand 35:1–183

    Google Scholar 

  • Fjellberg A (2007) The Collembola of Fennoscandia and Denmark. Part II: Entomobryomorpha and Symphypleona. Fauna Entomol Scand 42:1–264

    Google Scholar 

  • Fountain MT, Hopkin SP (2004) Biodiversity of Collembola in urban soils and the use of Folsomia candida to assess soil ‘quality’. Ecotoxicology 13:555–572

    Article  CAS  PubMed  Google Scholar 

  • Francis RA, Chadwick MA (2013) Urban ecosystems: understanding the human environment. Routledge, London and New York

    Google Scholar 

  • Frouz J, Thébault E, Pižl V, Adl S, Cajthaml T, Baldrian P, Hánȇl L, Tajovský K, Materna J, Nováková A, de Ruiter PC (2013) Soil food web changes during spontaneous succession at post mining sites: a possible ecosystem engineering effect on food web organization? PLoS ONE 8, e79694

    Article  PubMed  PubMed Central  Google Scholar 

  • Gartland L (2008) Heat islands: understanding and mitigating heat in urban areas. Earthscan Press, London

  • Georgi NJ, Zafiriadis K (2006) The impact of park trees on microclimate in urban areas. Urban Ecosyst 9:195–209

    Article  Google Scholar 

  • Greenslade P (2007) The potential of collembola to act as indicators of landscape stress in Australia. Aust J Exp Agric 47:424–434

    Article  Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation processes. Wiley, New York

    Google Scholar 

  • Irmler U (2006) Climatic and litter fall effects on collembolan and oribatid mite species and communities in a beech wood based on a 7 years investigation. Eur J Soil Biol 42:51–62

    Article  Google Scholar 

  • IUSS Working Group WRB (2007) World reference base for soil resources 2006, first update 2007. World soil resources reports no. 103. FAO, Rome

    Google Scholar 

  • Johnson EA, Miyanishi K (2007) Disturbance and succession. In: Johnson EA, Miyanishi K (eds) Plant disturbance ecology: the process and the response. Elsevier, Burlington

    Google Scholar 

  • Jordana R (2012) Capbryinae and Entomobryini. Synopses on Palaearctic Collembola. Soil Org 84:1–390

    Google Scholar 

  • Juceviča E, Melecis V (2002) Long-term dynamics of Collembola in a pine forest ecosystem. Pedobiologia 46:365–372

    Google Scholar 

  • Juceviča E, Melecis V (2006) Global warming affect Collembola community: a long-term study. Pedobiologia 50:177–184

    Article  Google Scholar 

  • Kaczmarek M (1995) Long-term changes of the Collembola community at the Kampinos Forest. Pol J Entomol 64:341–356

    Google Scholar 

  • Koehler H, Melecis V (2010) Long-term observations of soil mesofauna. In: Müller F, Baessler C, Schubert H, Klotz S (eds) Long-term ecological research. Between theory and application. Springer, Dordrecht, pp 203–220

    Chapter  Google Scholar 

  • Kowarik I (2011) Novel urban ecosystems, biodiversity, and conservation. Environ Pollut 159:1974–1983

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsova NA (1994) Collembolan guild as an indicator of tree plantation conditions in urban areas. Memorabilia Zool 49:197–205

    Google Scholar 

  • Kuznetsova NA (2007) Long-term dynamics of collembolan populations in forest and meadow ecosystems. Entomol Rev 87:11–24

    Article  Google Scholar 

  • Kuznetzova NA, Sterzyńska M (1995) Effects of single trees on the community structure of soil-dwelling Collembola in urban and non-urban environments. Fragm Faunistica 37:413–426

    Article  Google Scholar 

  • Kwasowski W (2013) Soils of traffic areas in Warsaw. In: Charzynski P, Hulisz P, Bednarek R (eds) Technogenic soils of Poland. Polish Society of Soil Science, Toruń, pp 207–229

    Google Scholar 

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Google Scholar 

  • Makkonen M, Berg MP, van Hal JR, Callaghan TV, Press MC, Aerts R (2011) Traits explain the responses of a sub-arctic Collembola community to climate manipulation. Soil Biol Biochem 43:377–384

    Article  CAS  Google Scholar 

  • Matuszkiewicz JM (2008) Geobotanical regionalization of Poland. IGSO PAS, Warszawa. https://www.igipz.pan.pl/geobotanical-regionalization-zgik.html. Accessed 12 June 2015

  • McDonnell M, Pickett ST, Groffman P, Bohlen P, Pouyat RV, Zipperer WC, Parmelee RW, Carreiro MM, Medley KY (1997) Ecosystem processes along an urban –to-rural gradient. Urban Ecosyst 1:21–36

    Article  Google Scholar 

  • Oke TR (1995) The heat island of the urban boundary layer: characteristics, causes and effects. In: Cermak JE, Davenport AG, Plate EJ, Viegas DX (eds) Wind climate in Cities. Kluwer Academic Publishers, Dordrecht, pp 81–107

  • Pasieczna A (2003) Atlas of urban soil contamination in Poland (Atlas zanieczyszczeń gleb miejskich w Polsce). Państwowy Instytut Geologiczny, Warszawa (in Polish with English summary)

    Google Scholar 

  • Pavao-Zuckerman MA (2008) The nature of urban soils and their role in ecological restoration in cities. Restor Ecol 16:642–649

    Article  Google Scholar 

  • Pavao-Zuckerman MA, Coleman DC (2007) Urbanization alters the functional composition, but not taxonomic diversity, of the soil nematode community. Appl Soil Ecol 35:329–339

    Article  Google Scholar 

  • Pawert M, Triebckorn R, Graff S, Berkus M, Schultz J, Kohler HR (1996) Cellular alterations in collembolan midgut as a marker of heavy metal exposure: ultrastructure and intracellular metal distribution. Sci Total Environ 180:187–200

    Article  Google Scholar 

  • Petersen H, Juceviča E, Gjelstrup P (2004) Long-term changes in collembolan communities in grazed and non-grazed abandoned arable fields in Denmark. Pedobiologia 48:559–573

    Article  Google Scholar 

  • Pickett STA, Cadenasso ML (2009) Altered resources, disturbance, and heterogeneity: a framework for comparing urban and non-urban soils. Urban Ecosyst 12:23–44

    Article  Google Scholar 

  • Pickett STA, Cadenasso ML, Grove JM, Nilon CH, Pouyat RV, Zipperer WC, Costanza R (2001) Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annu Rev Ecol Syst 32:127–157

    Article  Google Scholar 

  • Pickett STA, Cadenasso ML, Grove JM, Boone CG, Groffman PM, Irwin E, Kaushal SS, Marshall V, McGrath BP, Nilon CH, Pouyat RV, Szlavecz K, Troy A, Warren P (2011) Urban ecological systems: scientific foundations and a decade of progress. J Environ Manag 92:331–362

    Article  CAS  Google Scholar 

  • Pižl V, Jones G (1995) Earthworm communities along a gradient of urbanization. Environ Pollut 90:7–14

    Article  PubMed  Google Scholar 

  • Pižl V, Schlaghamerský J, Triska J (2009) The effects of polycylic aromatic hydrocarbons and heavy metals on terrestrial annelids in urban soils. Pesq Agrop Brasileira 44:1050–1055

    Google Scholar 

  • Pomorski RJ (1998) Onychiurinae of Poland (Collembola: Onychriuridae). Genus (Suppl):1–201

  • Potapov M (2001) Isotomidae. Synopses on Palaearctic Collembola. Abh Ber Naturkundemus Görlitz 73:1–603

    Google Scholar 

  • Pouyat RV, Parmelee RW, Carreiro MM (1994) Environmental effects of forest soil-invertebrate and fungal densities in oak stands along an urban–rural land use gradient. Pedobiologia 38:385–399

    CAS  Google Scholar 

  • Pouyat RV, Szlavecz K, Yesilonis ID, Groffman PM, Schwarz K (2010) Chemical, physical, and biological characteristics of urban soils. In: Aitkenhead-Peterson J, Volder A(eds) Urban ecosystems ecology. Agronomy Monograph 55, pp 119–152

  • Qiao X, Schmidt AH, Tang Y, Xu Y, Zhang C (2014) Demonstrating urban pollution using toxic metals of road dust and roadside soil in Chengdu, southwestern China. Stoch Environ Res Assess 28:911–919

    Article  Google Scholar 

  • Rochefort S, Therrien F, Shetlar DJ, Brodeur J (2006) Species diversity and seasonal abundance of Collembola in turfgrass ecosystems of North America. Pedobiologia 50:61–68

    Article  Google Scholar 

  • Rusek J (1993) Air-pollution-mediated changes in alpine ecosystems and ecotones. Ecol Appl 3:409–416

    Article  Google Scholar 

  • Santorufo L, Van Gestel CAM, Rocco A, Maisto G (2012) Soil invertebrates as bioindicators of urban soil quality. Environ Pollut 161:57–63

    Article  CAS  PubMed  Google Scholar 

  • Santorufo L, Cortet J, Arena C, Goudon R, Rakoto A, Morel J-L, Maisto G (2014) An assessment of the influence of the urban environment on collembolan communities in soils using taxonomy- and trait-based approaches. Appl Soil Ecol 78:48–56

    Article  Google Scholar 

  • Scharenbroch BC, Lloyd JE, Johnson-Maynard JL (2005) Distinguishing urban soils with physical, chemical, and biological properties. Pedobiologia 49:283–296

    Article  CAS  Google Scholar 

  • Shrubovych J (2002) The fauna of springtails (Collembola) in Lviv. Vestn Zoologii 36:63–67

    Google Scholar 

  • Ślipiński P, Żmihorski M, Czechowski W (2012) Species diversity and nestedness of ant assemblages in an urban environment. Eur J Entomol 109:197–206

    Article  Google Scholar 

  • Sterzyńska M (1990) Communities of Collembola in natural and transformed soils of the linden-oak-hornbeam sites of the Mazowian Lowland. Fragm Faun 34:165–262

    Article  Google Scholar 

  • Sterzyńska M, Kuznetsova NA (1997) Comparative analysis of dominant species in springtail communities (Hexapoda: Collembola) of urban greens in Moscow and Warsaw. Fragm Faun 40:15–26

    Article  Google Scholar 

  • Sterzyńska M, Shrubovych J, Kaprus I (2014) Effect of hydrologic regime and forest age on Collembola in riparian forests. Appl Soil Ecol 75:199–209

    Article  Google Scholar 

  • Stopa-Boryczka M, Boryczka J, Wawer J, Dobrowolska M, Osowiec M, Błażek E, Skrzypczuk J (2010) The climate of Warsaw and its suburbs (Klimat Warszawy i miejscowości strefy podmiejskiej) In: Atlas of interdependence of meteorological and geographical parameters in Poland (Atlas współzależności parametrów meteorologicznych i geograficznych w Polsce). Wydawnictwa Uniwersytetu Warszawskiego, Warszawa (in Polish)

  • Takeda H (1987) Dynamics and maintenance of collembolan community structure in a forest soil system. Res Popul Ecol 29:291–346

    Article  Google Scholar 

  • Thibaud J-M, Schulz H-J, da Gama Assalino MM (2004) Hypogastriudae. Synopses on Palaearctic collembola. Abh Ber Naturkundemus Görlitz 75:1–287

    Google Scholar 

  • Thiller W, Műnkeműller T, Lavergne S, Mouillot D, Mouquet N, Schifferes K, Gravel D (2013) A road map for integrating eco-evolutionary processes into biodiversity models. Ecol Lett 16:94–105

    Article  Google Scholar 

  • Tilman D (1985) The resource ratio hypothesis of succession. Am Nat 125:827–852

    Article  Google Scholar 

  • Tilman D (1999) The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80:1455–1474

    Google Scholar 

  • Urbanovičová V, Miklisová D, Kovać L (2014) Forest disturbance enhanced the activity of edaphic Collembola in windthrown stands of the High Tatra Mountains. J Mt Sci 11:449–463

    Article  Google Scholar 

  • Van Straalen NM, Van Meerendonk JH (1987) Biological half-lives of lead in Orchesella cincta (L.) (Collembola). Bull Environ Contam Toxicol 38:213–219

    Article  PubMed  Google Scholar 

  • Vitousek PM (1990) Biological invasions and ecosystem processes: towards an integration of population biology and ecosystem studies. Oikos 57:7–13

    Article  Google Scholar 

  • Walker LR, Wardle DA, Bardgett RD, Clarkson BD (2010) The use of chronosequences in studies of ecological succession and soil development. J Ecol 98:725–736

    Article  Google Scholar 

  • Wei B, Yang L (2010) A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem J 94:99–107

    Article  CAS  Google Scholar 

  • Williamson M (1996) Biological invasions. Chapman and Hall, London

    Google Scholar 

  • Wolters V (1998) Long-term dynamics of a collembolan community. Appl Soil Ecol 9:221–227

    Article  Google Scholar 

  • Zawadzki J, Fabijańczyk P (2008) The geostatistical reassessment of soil contamination with lead in metropolitan Warsaw and its vicinity. Int J Environ Pollut 35:1–12

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Marcin Gąsior (GIS Department of Museum and Institute of Zoology, PAS) for preparing the map and Mariusz Górnicz for his help in the linguistic review and Wanda Weiner for taxonomic verification of material. This study was funded from a grant by Museum and Institute of Zoology, PAS (GWIAZDA 2012). We also thank the Regional Directorate for Environmental Protection in Warsaw, Zarząd Dróg Miejskich (Municipal Road Authority of Warsaw) Warszawa, Zarząd Oczyszczania Miasta Warszawa (Sanitation Authority of Warsaw), and Urząd Dzielnicy Mokotów m.st. Warszawa (Mokotów District Authority of Warsaw) for making it possible to carry out our study in Warsaw’s urban green space.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Sterzyńska.

Appendix

Appendix

Table 4 Collembola species composition comparison between historical (=old) and current (=new) data in two urban green components

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rzeszowski, K., Sterzyńska, M. Changes through time in soil Collembola communities exposed to urbanization. Urban Ecosyst 19, 143–158 (2016). https://doi.org/10.1007/s11252-015-0478-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-015-0478-0

Keywords

Navigation