Skip to main content
Log in

Ruminal modulator additive effect of Stryphnodendron rotundifolium bark in feedlot lambs

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

The study aimed to evaluate the inclusion effects of Stryphnodendron rotundifolium (barbatimão) extracts in substitution of the lasalocid sodium on the ingestive behaviour, intake, ruminal parameters, and digestibility of feedlot lambs. Twenty-four pantaneiro lambs were used, with an average age of 150 ± 4.59 days and an initial body weight of 21.2 ± 3.63 kg. The lambs were distributed in three treatments in an experimental design with randomized blocks. The treatments correspond to the additive supplements: LAS (0.019 g of lasalocid sodium/lamb/d); DGB (1.50 g of barbatimão dried ground bark/lamb/d); DHE (0.30 g of barbatimão dry hydroalcoholic extract/lamb/d). The DHE increased 59.74 min in the time spent for ingestion per day, resulting in an efficiency reduction of dry matter (DM) ingestion (127 g of DM/h of feed). There was a reduction of 1.8 mg/dL in the ammoniacal nitrogen concentration with extract supplementation compared to LAS. The DGB reduced total volatile fatty acids by 48.9% compared to the control treatment. The inclusion of barbatimão extracts (DGB and DHE) reduced 12.05% of ruminal butyrate content. The supplementation of barbatimão extracts replacing lasalocid sodium in the diet of feedlot lambs did not affect intake and caused small changes on ingestive behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

The data supporting the findings of this study are available upon reasonable request from the corresponding author.

References

  • Acamovic, T. and Brooker, J.D., 2005. Biochemistry of plant secondary metabolites and their effects in animals. Proceedings of the Nutrition Society 64, 403-412.

    Article  CAS  PubMed  Google Scholar 

  • Aguerre, M.J., Capozzolo, M.C., Lencioni, P., Cabral, C. and Wattiaux, M.A., 2016. Effect of quebracho-chestnut tannin extracts at 2 dietary crude protein levels on performance, rumen fermentation, and nitrogen partitioning in dairy cows. Journal of Dairy Science 99, 4476-4486.

    Article  CAS  PubMed  Google Scholar 

  • Ahnert, S., Dickhoefer, U., Schulz, F. and Susenbeth, A., 2015. Influence of ruminal Quebracho tannin extract infusion on apparent nutrient digestibility, nitrogen balance, and urinary purine derivatives excretion in heifers. Livestock Science 177, 63-70.

    Article  Google Scholar 

  • Ammar, H., López, S., Kammoun, M., Bodas, R., Giráldez, F.J. and González, J.S., 2009. Feeding quebracho tannins to sheep enhances rumen fermentative activity to degrade browse shrubs. Animal Feed Science and Technology 149, 1-15.

    Article  CAS  Google Scholar 

  • AOAC, 1990. Official Methods of Analysis. 17th ed., (Association of Official Analytical Chemist, USA).

    Google Scholar 

  • Arowolo, M.A. and He, J., 2018. Use of probiotics and botanical extracts to improve ruminant production in the tropics: A review. Animal Nutrition 4, 241-249.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barbosa, C.R., Pantoja, J.C., Fernandes, T., Chagas, R.A., Souza, C.G., Santos, A.R.D. and Vargas Junior, F.M., 2023. Bioactive Compounds of Barbatimão (Stryphnodendron sp.) as Dietary Additive in Lamb Diets. Agriculture 13, 664.

    Article  CAS  Google Scholar 

  • Beauchemin, K.A., McGinn, S.M., Martinez, T.F. and McAllister, T.A., 2007. Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle. Journal of Animal Science 85, 1990-1996.

    Article  CAS  PubMed  Google Scholar 

  • Bunglavan, S. and Dutta, N., 2013. Use of tannins as organic protectants of proteins in digestion of ruminants. Livestock Science 4, 67-77.

    Google Scholar 

  • Bürger, P.J., Pereira, J.C., Queiroz, A.C., Silva, J.F., Valadares Filho, S.C., Cecon, P.R. and Casali, A.D.P., 2000. Ingestive behavior in Holstein calves fed diets containing different levels of concentrate. Brazilian Journal of Animal Science 29, 236-242.

    Google Scholar 

  • Cardoso-Mendes, J.A., Maia Parente, M.O., Nunes Parente, H., Zanine, A.M., Ferreira, D.J., Moreira Filho, M.A., Cunha, I.A.L., Landim, A.V. and Rocha, K.S., 2018. Performance, ingestive behavior and cost of production of finishing lambs fed non-forage diets. Biological Rhythm Research 51, 460-470.

    Article  Google Scholar 

  • Cheng, L., Cantalapiedra-Hijar, G., Meale, S.J., Rugoho, I., Jonker, A., Khan, M.A., Al-Marashdeh, O. and Dewhurst, R.J., 2021. Review: Markers and proxies to monitor ruminal function and feed efficiency in young ruminants. Animal 15, 100337.

    Article  CAS  PubMed  Google Scholar 

  • Cobellis, G., Trabalza-Marinucci, M., Marcotullio, M.C. and Yu, Z., 2016. Evaluation of different essential oils in modulating methane and ammonia production, rumen fermentation, and rumen bacteria in vitro. Animal Feed Science and Technology 215, 25-36.

    Article  CAS  Google Scholar 

  • Das, K and Qin, W., 2012. Isolation and characterization of superior rumen bacteria of cattle (Bos taurus) and potential application in animal feedstuff. Open Journal of Animal Science 2, 224-228.

    Article  CAS  Google Scholar 

  • Djeridane, A., Yousfi, M., Nadjemi, B., Boutassouna, D., Stocker, P. and Vidal, N., 2006. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chemistry 97, 654-660.

    Article  CAS  Google Scholar 

  • Estell, R.E., 2010. Coping with shrub secondary metabolites by ruminants. Small Ruminant Research 94, 1-9.

    Article  Google Scholar 

  • Flythe, M.D., Kagan, I.A., Wang, Y. and Narvaez, N., 2017. Hops (Humulus lupulus L.) Bitter Acids: Modulation of Rumen Fermentation and Potential As an Alternative Growth Promoter. Frontiers in Veterinary Science 4, 131.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fontoura, F.M., Matias, R., Ludwig, J., Oliveira, A.K.M.D., Bono, J.A.M., Martins, P.D.F.R.B. and Guedes, N.M.R., 2015. Seasonal effects and antifungal activity from bark chemical constituents of Sterculia apetala (Malvaceae) at Pantanal of Miranda, Mato Grosso do Sul, Brazil. Acta Amazon 45, 283-292.

    Article  Google Scholar 

  • Grainger, C., Clarke, T., Auldist, M.J., Beauchemin, K.A., McGinn, S.M., Waghorn, G.C. and Eckard, R.J., 2009. Potential use of Acacia mearnsii condensed tannins to reduce methane emissions and nitrogen excretion from grazing dairy cows. Canadian Journal of Animal Science 89, 241-251.

    Article  CAS  Google Scholar 

  • Guerreiro, O., Alves, S.P., Soldado, D., Cachucho, L., Almeida, J.M., Francisco, A., Santos-Silva, J., Bessa, R.J.B., Jerónimo, E., 2020. Inclusion of the aerial part and condensed tannin extract from Cistus ladanifer L. in lamb diets - Effects on growth performance, carcass and meat quality and fatty acid composition of intramuscular and subcutaneous fat. Meat Science 160, 107945.

  • Hess, H.D., Kreuzer, M., Dıaz, T., Lascano, C.E., Carulla, J.E., Soliva, C.R. and Machmüller A., 2003. Saponin rich tropical fruits affect fermentation and methanogenesis in faunated and defaunated rumen fluid. Animal Feed Science and Technology. 109, 79-94.

    Article  CAS  Google Scholar 

  • Ibe, A.E., Onuoha, G.N., Adeyemi, A.A., Madukwe, D.K. and Udobi, J.O., 2013. Quantitative analyses of honey samples from four different sources in Abia state, Nigeria. International Journal of Natural and Applied Sciences 13, 107-116.

    Google Scholar 

  • IBGE. Municipal Livestock Research, Statistics, I.B.d.G.e.E, Brazil. 2018. https://sidra.ibge.gov.br/tabela/3939#resultado. Accessed 04 July 2023.

  • Jayanegara, A., Goel, G., Makkar, H.P.S. and Becker, K., 2015. Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Animal Feed Science and Technology 209, 60-68.

    Article  CAS  Google Scholar 

  • Jerónimo, E., Pinheiro, C., Lamy, E., Dentinho, M.T., Sales-Baptista, E. and Lopes, O., 2016. Tannins in ruminant nutrition: Impact on animal performance and quality of edible products, in: Combs, C.A., (ed), Tannins: Biochemistry, Food Sources and Nutritional Properties, 2016, (New York: Nova Science Publishers), 1-43.

    Google Scholar 

  • Johnson, T. and Combs, D., 1991. Effects of prepartum diet, inert rumen bulk, and dietary polyethylene glycol on dry matter intake of lactating dairy cows. Journal of Dairy Science 74, 933-944.

    Article  CAS  PubMed  Google Scholar 

  • Lemos, B.J.M., Souza, F.M., Arnhold, E., Conceicao, E.C., Couto, V.R.M. and Fernandes J.J.R., 2021. Effects of plant extracts from Stryphnodendron adstringens (mart.) coville, Lafoensia pacari a. st.-hil, copaifera spp., and Pterodon emarginatus Vogel on in vitro rumen fermentation. Journal of Animal Physiology and Animal Nutrition 105, 639-652.

    Article  CAS  PubMed  Google Scholar 

  • Makkar, H. P. S., 2003. Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Ruminant Research 49(3), 241-256.

    Article  Google Scholar 

  • MAPA. Normative Instruction - 3, 17 Jan 2000: technical regulation of stunning methods for the humane slaughter of butchery animals. Brazil. 2000. https://www.defesa.agricultura.sp.gov.br/legislacoes/instrucao-normativa-sda-3-de-1701-2000,661.html. Acessed 30 April 2020.

  • Mergeduš, A., Pšenková, M. and Janžekovič, M., 2020. Tannins and their Effect on Production Efficiency of Ruminants. Agriculture 12, 1-11.

    Google Scholar 

  • Mertens, D.R., 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. Journal of AOAC International. 85, 1217-1240.

    CAS  PubMed  Google Scholar 

  • Mkhize, N.R., Heitkönig, I.M.A., Scogings, P.F., Dziba, L.E., Prins, H.H.T. and Boer, W.F., 2015. Condensed tannins reduce browsing and increase grazing time of free-ranging goats in semi-arid savannas. Applied of Animal Behaviour Science 169, 33-37.

    Article  Google Scholar 

  • Moeller, L., Goersch, K., Neuhaus, J., Zehnsdorf, A. and Mueller, R.A., 2012. Comparative review of foam formation in biogas plants and ruminant bloat. Energy, Sustainability and Society 2, 1-9.

    Article  Google Scholar 

  • Mueller-Harvey, I. 2006. Unravelling the conundrum of tannins in animal nutrition and health. Journal of Science Food and Agriculture 86, 2010-2037.

    Article  CAS  Google Scholar 

  • Ornaghi, M.G., Passetti, R.A.C., Torrecilhas, J.A., Mottin, C., Vital, A.C.P., Guerrero, A., Sañudo, C., Campo, M.M. and Prado, I.N., 2017. Essential oils in the diet of young bulls: Effect on animal performance, digestibility, temperament, feeding behaviour and carcass characteristics. Animal Feed Science and Technology 234, 274-283.

    Article  CAS  Google Scholar 

  • Pathak, A.K., Dutta, N., Pattanaik, A.K., Chaturvedi, V.B. and Sharma, K., 2017. Effect of condensed tannins from Ficus infectoria and Psidium guajava leaf meal mixture on nutrient metabolism, methane emission and performance of lambs. Asian-Australas Journal of Animal Science 30, 1702-1710.

    Article  CAS  Google Scholar 

  • Patra, A.K. and Saxena, J., 2011. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. Journal of Science Food and Agriculture 91, 24-37.

    Article  CAS  Google Scholar 

  • Pereira-Junior, L.C.S., Oliveira, E.C., Rorig, T.D.V., Araújo, P.I.P., Sanchez, E.F., Garrett, R., Mello, J.C.P. and Fulyet, A.L., 2020. The plant Stryphnodendron adstringens (Mart.) Coville as a neutralizing source against some toxic activities of Bothrops jararacussu snake venom. Toxicon 186, 182-190.

    Article  Google Scholar 

  • Pinho, L.D., Souza, P.N.S., Macedo-Sobrinho, E., Almeida, A.C.D. and Martins, E.R., 2012. Antimicrobial activity of hydroalcoholic extracts from rosemary, peppertree, barbatimão and erva baleeira leaves and from pequi peel meal. Rural Science 42, 326-331.

    Article  Google Scholar 

  • Pinho, R.M.A., Santos, E.M., Oliveira, J.S., Carvalho, G.G.P., Silva, T.C., Macêdo, A.J.S., Corrêa, Y.R. and Zanine, A.M., 2018. Does the level of forage neutral detergent fiber affect the ruminal fermentation, digestibility and feeding behavior of goats fed cactus pear? Animal Science Journal 89, 1424-1431.

    Article  CAS  PubMed  Google Scholar 

  • Preston, T., 1986. Better utilization of crop residues and by-products in animal feeding: research guidelines. A practical manual for research workers. FAO Animal Production Health Paper 50, 154-154.

    Google Scholar 

  • Ribeiro, M.M.S., Santos, L.C., Novais, N.S., Viganó, J. and Veggi, P.C., 2020. An evaluative review on Stryphnodendron adstringens extract composition: Current and future perspectives on extraction and application. Industrial Crops and Products 187, 115325.

    Article  Google Scholar 

  • Rochfort, S., Parker, A.J. and Dunshea, F.R. 2008. Plant bioactives for ruminant health and productivity. Phytochemistry 69, 299-322.

    Article  CAS  PubMed  Google Scholar 

  • Russell, J.B. and Strobel, H.J., 1989. Effect of ionophores on ruminal fermentation. Applied Environmental Microbiology 55, 1-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider, B.H. and Flatt, W.P., 1977. The Evaluation of Feeds through Digestibility Experiments. Canadian Veterinary Journal 18, 141.

    Google Scholar 

  • Sniffen, C.J., O'Connor, J.D., Van Soest, P.J., Fox, D.G. and Russell, J.B., 2002. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal of Animal Science 70, 3562-3577.

    Article  Google Scholar 

  • Souza-Moreira, T.M., Queiroz-Fernandes, G.M. and Pietro, R., 2018. Stryphnodendron Species Known as "Barbatimao": A Comprehensive Report. Molecules 23, 910.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stevanovic, Z.D., Bosnjak-Neumuller, J., Pajic-Lijakovic, I., Raj, J. and Vasiljevic, M., 2018. Essential Oils as Feed Additives-Future Perspectives. Molecules 23, 1717.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stevens, C.E., 1970. Fatty acid transport through the rumen epithelium, in: Phillipson, A.T., (ed), Physiology of Digestion and Metabolism in the Ruminant, 1991, (Newcastle upon Tyne: Oriel Press), 101-112.

    Google Scholar 

  • Tabke, M.C., Sarturi, J.O., Galyean, M.L., Trojan, S.J., Brooks, J.C., Johnson, B.J., Martin, J., Baggerman, J. and Thompson A.J., 2017. Effects of tannic acid on growth performance, carcass characteristics, digestibility, nitrogen volatilization, and meat lipid oxidation of steers fed steam-flaked corn-based finishing diets. Journal of Animal Science 95, 5124-5136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tedeschi, L.O., Callaway, T.R., Muir, J.P. and Anderson, R.C. 2011. Potential environmental benefits of feed additives and other strategies for ruminant production. Brazilian Journal of Animal Science 40, 291-309.

    Google Scholar 

  • Teng, B., Hayasaka, Y., Smith, P.A. and Bindon, K.A., 2019. Effect of Grape Seed and Skin Tannin Molecular Mass and Composition on the Rate of Reaction with Anthocyanin and Subsequent Formation of Polymeric Pigments in the Presence of Acetaldehyde. Journal of Agriculture and Food Chemistry 67, 8938-8949.

    Article  CAS  Google Scholar 

  • Valenzuela-Grijalva, N.V., Pinelli-Saavedra, A., Muhlia-Almazan, A., Dominguez-Diaz, D. and Gonzalez-Rios, H., 2017. Dietary inclusion effects of phytochemicals as growth promoters in animal production. Journal of Animal Science Technology 59, 8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Soest, P.J., Robertson, J.B. and Lewis, B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 3583-3597.

    Article  PubMed  Google Scholar 

  • Wang, B., Luo, Y., Wang, Y., Wang, D., Hou, Y., Yao, D., Tian, J. and Jin, Y., 2021. Rumen bacteria and meat fatty acid composition of Sunit sheep reared under different feeding regimens in China. Journal of Science Food Agriculture 101, 1100-1110.

    Article  CAS  Google Scholar 

  • Wina, E., Muetzel, S. and Becker, K., 2005. The impact of saponins or saponin-containing plant materials on ruminant production--a review. Journal of Agriculture and Food Chemistry 53, 8093-8105.

    Article  CAS  Google Scholar 

  • Yanza, Y.R., Fitri, A., Suwignyo, B., Elfahmi, Hidayatik, N., Kumalasari, N.R., Irawan, A. and Jayanegara, A., 2021. The Utilisation of Tannin Extract as a Dietary Additive in Ruminant Nutrition: A Meta-Analysis. Animals 11, 3317.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zawadzki, F., Martin do Prado, R., Ornaghi, M.G., Carvalho, V.M., Avila, V.A.D., Ramos, T.R., Moletta, J.L. and Prado, I.N., 2021. Replacement of corn by glycerine and vegetal oils (cashew and castor oils) as alternative additives feeds in diets of Purunã bulls finished in feedlot. Livestock Science 253, 104695.

    Article  Google Scholar 

  • Zheng, S., Bawazir, M., Dhall, A., Kim, H.E., He, L., Heo, J., Hwang, G., 2021. Implication of Surface Properties, Bacterial Motility, and Hydrodynamic Conditions on Bacterial Surface Sensing and Their Initial Adhesion. Frontiers in Bioengineering and Biotechnology 9, 643722.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors want to thank the Brazilian Federal Agency for Post-Graduate Education (CAPES; Brasilia, DF, Brazil) and the Foundation for Support to the Development of Education, Science and Technology of the State of Mato Grosso do Sul (FUNDECT).

Author information

Authors and Affiliations

Authors

Contributions

CRB, JCP, TF, CGS, and FMVJ conceived and designed the study; CRB, JCP, RAC, CGS, ARDS, and JPA collected data; TF and FMVJ analysed the data; CRB, TF, ARDS, and FMVJ interpreted the data and produced the first draft. In addition, all authors revised and approved the final version of the manuscript.

Corresponding author

Correspondence to Fernando M. Vargas Junior.

Ethics declarations

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbosa, C.R., Pantoja, J.C., Fernandes, T. et al. Ruminal modulator additive effect of Stryphnodendron rotundifolium bark in feedlot lambs. Trop Anim Health Prod 56, 53 (2024). https://doi.org/10.1007/s11250-024-03903-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-024-03903-5

Keywords

Navigation