Skip to main content
Log in

Infectious sporadic bovine abortions: retrospective analysis

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

Infectious sporadic abortions in cattle are mainly caused by opportunistic bacteria and fungi usually present in environmental or gastrointestinal and reproductive microbiota of healthy animals. A retrospective analysis was carried out to evaluate the main opportunistic microorganisms involved in bovine abortions recorded at INTA Balcarce (Argentina) from 1997 to 2023, accounting for 2.2% of the total diagnosed etiologies of bovine abortion. The opportunistic agents identified as the cause of abortion in 29 fetuses were bacteria (90%) and fungi (10%). Escherichia coli (n = 8), Trueperella pyogenes (n = 5), and Histophilus somni (n = 4) were the bacterial species most often identified as causing infectious abortions, whereas Aspergillus spp. (n = 3) was implicated in all fungal abortions identified. Pure culture of bacteria or fungus was achieved from abomasal content and/or lung essential. Main microscopic findings were bronchopneumonia, myo- and epicarditis, meningitis, and portal hepatitis. Herein, we highlight the importance of detecting potential infectious bacteria in cultures to improve etiological diagnosis of bovine abortions associated with compatible microscopic findings to confirm the etiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data of this study are available from the corresponding author upon reasonable request.

References

  • Agerholm, J.S., Jensen, N.E., Dantzer, V., Jensen, H.E., Aarestrup, F.M., 1999. Experimental infection of pregnant cows with Bacillus licheniformis Bacteria. Veterinary Pathology, 36, 191.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, M.L., 2007. Infectious causes of bovine abortion during mid- to late-gestation. Theriogenology, 68, 474–486.

    Article  PubMed  Google Scholar 

  • Araínga, M.R., Sandoval, N.Ch., Zacarías, E.R., Rivera, H.G., 2003. Actinomyces pyogenes causante de aborto en bovinos. Revista de Investigaciones Veterinarias del Perú, 14(1), 86-88.

    Google Scholar 

  • Banerjee, B., Madiyal, M., Ramchandra, L., Mukhopadhyay, C., Garg, R., Chawla, K., 2017. Unusual severe extra-intestinal manifestations of a common enteric pathogen-Aeromonas spp. Journal of Clinical and Diagnostic Research, 11(5), DC01-DC03. https://doi.org/10.7860/JCDR/2017/26600.9787.

  • Baumgartner, W., 2021. Fetal disease and abortion: diagnosis and causes. Bovine Reproduction, Second Edition. Edited by Richard M. Hopper. © 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc. Companion website: www.wiley.com/go/hopper/bovine

  • Beneke, E.S., Rogers, A.L., 1971. Medical mycology manual, 3rd ed. Burgess Publishing Co., Minneapolis, MN.

    Google Scholar 

  • Cabell, E., 2007. Bovine abortions: aetiology and investigations. In Practice, 29, 455-463.

    Article  Google Scholar 

  • Cantón, G.J., Moreno, F., Fiorentino, M.A., Hecker, Y.P., Spetter, M., Fiorani, F., Monterubbianesi, M.G., García, J.A., Altamiranda, E.G., Cirone, K.M., Louge Uriarte, E.L., Verna, A.E., Marin, M., Cheuquepán, F., Malena, R., Morsella, C., Paolicchi, F.A., Morrell, E.L., Moore, D.P., 2022. Spatial–temporal trends and economic losses associated with bovine abortifacients in Central Argentina. Tropical Animal Health and Production, 54, 242. https://doi.org/10.1007/s11250-022-03237-0

    Article  PubMed  Google Scholar 

  • Clothier, K.. Anderson, M.L., 2016. Evaluation of bovine abortion cases and tissue suitability for identification of infectious agents in California diagnostic laboratory cases from 2007 to 2012. Theriogenology, 85, 933–938.

    Article  CAS  PubMed  Google Scholar 

  • Di Blasio, A., Traversa, A., Giacometti, F., Chiesa, F., Piva, S., Decastelli, L., Dondo, A., Gallina, S., Zoppi, S., 2019. Isolation of Arcobacter species and other neglected opportunistic agents from aborted bovine and caprine fetuses. BMC Veterinary Research, 15, 257. https://doi.org/10.1186/S12917-019-2009-3/TABLES/3

    Article  PubMed  PubMed Central  Google Scholar 

  • Foster, N., Tang, Y., Berchieri, A., Geng, S., Jiao, X., Barrow, P., 2021. Revisiting persistent Salmonella infection and the carrier state: What DoWe Know?. Pathogens, 10, 1299. https://doi.org/10.3390/pathogens10101299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González Altamiranda, E.A., Kaiser, G.G., Weber, N., Leunda, M.R., Pecora, A., Malacari, D.A., Morán, O., Campero, C.M., Odeón, A.C., 2012. Clinical and reproductive consequences of using BVDV- contaminated semen in artificial insemination in a beef herd in Argentina. Animal Reproduction Science, 133, 146–152.

    Article  PubMed  Google Scholar 

  • Harris, F.W., Janzen, E.D., 1989. The Haemophilus somnus disease complex (Hemophilosis): A review. Canadian Veterinary Journal, 30, 816–822.

    CAS  Google Scholar 

  • Henker, L.C., Lorenzett, M.P., Riboldi, C.I., Siqueira, F.M., Driemeier, D., Pavarini, S.P., 2020. Bovine abortion associated with Staphylococcus aureus infection-characterization of S. aureus strain isolated from fetal tissues. Ciencia Rural, 50.

  • Henker, L.C., Lorenzett, M.P., Lopes, B.C., Dos Santos, I.R., Bandinelli, M.B., Bassuino, D.M., Pavarini, S.P., 2022. Pathological and etiological characterization of cases of bovine abortion due to sporadic bacterial and mycotic infections. Brazilian Journal of Microbiology, 53(4), 2251-2262.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ilhan, Z., Gulhan, T., Aksakal, A., 2006. Aeromonas hydrophila associated with ovine abortion. Small Ruminant Research, 61, 73–78.

    Article  Google Scholar 

  • Kirkbride, CA. 1992. Viral agents and associated lesions detected in a l0-year study of bovine abortions and stillbirths. Journal of Veterinary Diagnostic Investigation, 4, 374-379.

    Article  CAS  PubMed  Google Scholar 

  • Kirkbride, C.A., 2012. Kirkbride’s Diagnosis of Abortion and Neonatal Loss in Animals, Fourth Edition. Edited by Bradley L. Njaa. © 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

  • Klich, M.A. and Samson, R.A., 1996. Aspergillus reference cultures. International Union of Microbiological Societies. ASM NEWS, 63(9): 459-459.

    Google Scholar 

  • Macías-Rioseco, M., Silveira, C., Fraga, M., Casaux, L., Cabrera, A., Francia, M.E., Robello, C., Maya, L., Zarantonelli, L., Suanes, A., Colina, R., Buschiazzo, A., Giannitti, F., Riet-Correa F., 2020. Causes of abortion in dairy cows in Uruguay. Pesquisa Veterinária Brasileira, 40(5), 325-332.

    Article  Google Scholar 

  • Bergey's Manual of Systematic Bacteriology. Volume 3: The Firmicutes. Second Edition. Vos, P., Garrity, G., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.A., Schleifer, K.-H., Whitman, W.B. (Eds.). Springer-Verlag New York, USA. 2009.

  • Mee, J.F., 2023. Invited review: Bovine abortion-incidence, risk factors and causes. Reproduction in Domestic Animals, 00, 1-11.

    Google Scholar 

  • Miller, R.B., VanCamp, S.D., Barnum, D.A., 1983. The effects of intra-amniotic inoculation of Haemophilus somnus on the bovine fetus and dam. Veterinary Pathology, 20, 574-583.

    Article  CAS  PubMed  Google Scholar 

  • Moro, E.M.P., Weiss, R.D.N., Friedrich, R.S.C., de Vargas, Á.C., Weiss, L.H.N., Nunes, M.P., 1999. Aeromonas hydrophila isolated from cases of bovine seminal vesiculitis in South Brazil. Journal of Veterinary Diagnostic Investigation, 11(2), 189-191. https://doi.org/10.1177/104063879901100217

    Article  CAS  PubMed  Google Scholar 

  • Morrell, E., Campero, C.M., Cantón, G.J., Odeón, A.C., Moore, D.P., Odriozola, E., Paolicchi, F., Fiorentino, M.A., 2019. Current trends in bovine abortion in Argentina. Pesquisa Veterinaria Brasileira, 39(1), 12-19, https://doi.org/10.1590/1678-5150-PVB-5668.

    Article  Google Scholar 

  • Njaa, B.L., 2012. Kirkbride's Diagnosis of abortion and neonatal loss in animals. 4th Edition, Oxford: Wiley-Blackwell, 256p.

    Book  Google Scholar 

  • Pal, M., 2015. Growing role of fungi in mycotic abortion of domestic animal. Journal of Bacteriology and Mycology, 2(1), 1009.

    Google Scholar 

  • Popoff, M.Y., 2001. Antigenic Formulas of the Salmonella Serovars, 8th ed World Health Organization Collaborating Centre for Reference and Research on Salmonella, Intitut Pasteur Paris, France

    Google Scholar 

  • Rivera, H.G., 2001. Causas frecuentes de aborto bovino. Revista de investigaciones veterinarias del Perú, 12(2), 117-122.

    Google Scholar 

  • Rzewuska, M., Kwiecień, E., Chrobak-Chmiel, D., Kizerwetter-Świda, M., Stefańska, I., Gieryńska, M., 2019. Pathogenicity and virulence of Trueperella pyogenes: A Review. International Journal of Molecular Sciences, 20(11), 2737. https://doi.org/10.3390/ijms20112737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos, T.M.A., Caixeta, L.S., Machado, V.S., Rauf, A.K., Gilbert, R.O., Bicalho, R.C., 2010. Antimicrobial resistance and presence of virulence factor genes in Arcanobacterium pyogenes isolated from the uterus of postpartum dairy cows. Veterinary Microbiology, 145(1–2), 84-89,

    Article  CAS  PubMed  Google Scholar 

  • Schlafer, D.H., Foster, R.A., 2016. Female Genital System. In Maxie MG ed., Jubb, Kennedy and Palmer’s Pathology of Domestic Animals. 6th ed., Vol. 3 p 358, Elsevier.

    Chapter  Google Scholar 

  • Spetter, M.J., Louge Uriarte, E.L., Armendano, J.I., Álvarez, I., Norero, N.S., Storani, L., Pereyra, S.B., Verna, A.E., Odeón, A.C., González Altamiranda, E.A., 2021. Frequency of bovine viral diarrhea virus (BVDV) in Argentinean bovine herds and comparison of diagnostic tests for BVDV detection in bovine serum samples: a preliminary study. Brazilian Journal of Microbiology, 52(1), 467-475.

    Article  CAS  PubMed  Google Scholar 

  • Strugnell, B.W., Bennett, G., Davies, R.H., Horton, R.A., 2011. Bovine abortion associated with Salmonella 9, 12:-:-NM in a UK dairy herd. The Veterinary Record, 169(8), 208.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, R.F., Njaa, B.L., 2012. General approach to fetal and neonatal loss. In: Njaa, Bradley L. (Ed.), Kirkbride’s Diagnosis of Abortion and Neonatal Loss in Animals. John Wiley & Sons, Oxford: UK, vol.4 p. 1–12.

    Google Scholar 

  • Terzolo, H.R., Paolicchi, F.A., Moreira, A.R., Homse, A., 1991. Skirrow agar for simultaneous isolation of Brucella and Campylobacter species. Veterinary Records, 129, 531-532.

    CAS  Google Scholar 

  • Vidal, S., Kegler, K., Posthaus, H., Perreten, V., Rodriguez-Campos, S., 2017. Amplicon sequencing of bacterial microbiota in abortion material from cattle. Veterinary Research, 48, 1–15. https://doi.org/10.1186/S13567-017-0470-1/FIGURES/6

    Article  Google Scholar 

  • Ward, A.C., 1990. Isolation of Pasteurellaceae from bovine abortions. Journal of Veterinary Diagnostic Investigation, 2(1), 59-62. https://doi.org/10.1177/104063879000200111.

    Article  CAS  PubMed  Google Scholar 

  • Wohlgemuth, K., Pierce, R.L., Kirkbride, C.A., 1972. Bovine abortion associated with Aeromonas hydrophila. Journal of the American Veterinary Medical Association, 160, 1001-1002.

    CAS  PubMed  Google Scholar 

  • Wolf‐Jäckel, G.A., Hansen, M.S., Larsen, G., Holm, E., Agerholm, J.S., Jensen, T.K., 2020. Diagnostic studies of abortion in Danish cattle 2015-2017. Acta Veterinaria Scandinavica, 62,1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolf-Jäckel, G.A., Strube, M.L., Schou, K.K., Schnee, C., Agerholm, J.S., Jensen, T.K., 2021. Bovine Abortions Revisited-Enhancing Abortion Diagnostics by 16S rDNA Amplicon Sequencing and Fluorescence in situ Hybridization. Frontiers in Veterinary Science, 23, 8, 623666, https://doi.org/10.3389/fvets.2021.623666.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the technicians and colleagues from the Animal Health Group at INTA Balcarce.

Funding

This study was funded by research grants from the Agencia Nacional de Promoción Científica y Tecnológica (FONCyT: PICT 2020–3362) and from INTA Red Nacional de Laboratorios de Diagnóstico Veterinario (2019-RIST-E5-I111-001), Argentina.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The collection of samples and pathological studies were carried out by YA, ES, GJC, ELM, and JAG. Bacterial culture was performed by MAF, RM, and MAM. Micotical cultures were performed by IE. Material preparation, data collection, and analysis were performed by MAF, YA, ES, and JAG. The first draft of the manuscript was written by YA, MAF, and JAG, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to María A. Fiorentino.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiorentino, M.A., Acuña, Y., Sosa, E. et al. Infectious sporadic bovine abortions: retrospective analysis. Trop Anim Health Prod 56, 63 (2024). https://doi.org/10.1007/s11250-024-03892-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-024-03892-5

Keywords

Navigation