Skip to main content
Log in

Extruded urea levels in lamb supplementation in rainy tropical savanna conditions: the triad host-gastrointestinal nematodes-environment

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the influence of increasing levels of extruded urea (EU, Amireia®) in the diet of lambs naturally infected by gastrointestinal nematodes on the interactions in the host-pasture-soil components in edaphoclimatic conditions of the tropical rainy savanna. A total of 60 Texel lambs with a mean initial weight of 20.7 ± 0.87 and mean age of 2.5 ± 0.70 months were distributed in a completely randomized design, in five treatments consisting of different levels of EU supplementation viz., 0, 6, 12, 18, and 24 g 100 kg−1 live weight (LW). The performance of lambs, parasitological variables, gastrointestinal nematodes (NGIs), and larvae recovery in pasture and soil were evaluated. The highest animal performance was observed in animals that received 0 to 18 g kg−1 LW (146.0 g day−1) and the lowest in animals supplemented with 24 g kg−1 LW (81.0 g day−1) of EU. The body condition score (BCS) was similar in the animals (P > 0.05). Parasitic infection did not differ as a function of EU level (P > 0.05). Eggs of Haemonchus spp., Trichostrongylus spp., Cooperia spp., and Oesophagostomum spp. were found. The largest amount of larvae in the L1/L2 and L3 stages was recovered in the pastures occupied by the animals that received supplementation 0 g kg−1 LW of EU (750 larvae), the smallest in those that the animals received 6 g 100 kg−1 LW of EU (54 larvae). The presence of larvae in the L1/L2 stages changed significantly (P < 0.05) in the soil; in the other stages, it did not differ in the soil. Increasing levels of extruded urea do not influence the eggs per gram of feces (EPG) count. The 0 to 18 g 100 kg−1 LW level maintains animal performance, BCS and FAMACHA©. There is less dispersal of NGI larvae in pasture and soil when EU levels increase in the edaphoclimatic conditions of the rainy tropical savannah, which suggests that this supplement can be implemented in the diet of beef lambs, in addition to to be a lower cost nitrogen source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available due to the originality of the research, but are available from the corresponding author upon reasonable request.

References

  • Association of Official Analytical Chemists - AOAC, 2000. Official Methods of Analysis. 17. ed. Gaithersburg, MD, USA: AOAC.

  • Atiba, E.M., Zewei, S., Qingzhen, Z., 2020. Influence of metabolizable protein and minerals supplementation on detrimental effects of endoparasitic nematodes infection in small ruminants. Tropical Animal Health and Production, 52, 2213-2219. https://doi.org/10.1007/s11250-020-02275-w.

    Article  PubMed  Google Scholar 

  • Brown., M.D., Poppi, D.P., Sykes, A.R., 1991. The effect of post-ruminal infusion of protein or energy on the pathophysiology Trichostrongylus colubriformis infection and body composition in lambs. Australian Journal of Agricultural Research, 42, 253-267.https://doi.org/10.1071/AR9910253

  • Bruns, W., 1937. Das Verhalten der invasionsfähigen Larven der Pferdestrongyliden in verschiedenen Bodenarten., (Inaugural Dissertion, Berlin)

  • Burke, J.M., Miller, J.E., 2020. Sustainable Approaches to Parasite Control in Ruminant Livestock. Veterinary Clinics of North America: Food Animal Practice, 36, 89–107. https://doi.org/10.1016/j.cvfa.2019.11.007.

    Article  PubMed  Google Scholar 

  • Carvalho, A.B., Silva, A.L., Silva, A.M.A., Netto, A.J., Medeiros, T.T.B., Araújo Filho, J.M., Agostini, D.L.S., Oliveira, D.L.V., Mazzetto, S.E., Kotzebue, L.R.V., Oliveira, J.R., Oliveira, R.L., Bezerra, L.R., 2019. Effect of slow-release urea microencapsulated in beeswax and its inclusion in ruminant diets. Small Ruminant Research, 179, 56–63. https://doi.org/10.1016/j.smallrumres.2019.09.005.

    Article  Google Scholar 

  • Charlier, J., Höglund, J., Morgan, E.R., Geldhof, P., Vercruysse, J., Claerebout, E., 2020. Biology and Epidemiology of Gastrointestinal Nematodes in Cattle. Veterinary Clinics of North America: Food Animal Practice, 36, 1–15. https://doi.org/10.1016/j.cvfa.2019.11.001.

    Article  PubMed  Google Scholar 

  • Crawford, C.D., Mata-Padrino, D.J., Belesky, D.P., Bowdridge, S.A., 2020. Effects of supplementation containing rumen by-pass protein on parasitism in grazing lambs. Small Ruminant Research, 190, 106161. https://doi.org/10.1016/j.smallrumres.2020.106161.

  • De Paula, E.F.E., Stupak, E.C., Zanatta, C.P., Poncheki, J.K., Leal, P.C., Monetiro, A.L.G., 2010. Comportamento ingestivo de ovinos em pastagens: Uma revisão. Revista Trópica: Ciências Agrárias E Biológicas, 4, 42-51.

    Google Scholar 

  • Gordon, H.M.C.L., Whitlock, H.V., 1939. A new technique for counting nematode eggs in sheep feces. Journal Council for Scientific and Industrial Research, 12, 50-52.

    Google Scholar 

  • Gurgel, A.L.C., Difante, G.S., Emerenciano Neto, J.V., Roberto, F.F.S., Zaros, L.G., Costa, M.G., Ítavo, L.C.V., Ítavo, C.C.B.F., 2020. Impact of supplementation with different protein sources on the parasitological profile of ovine matrices and development of lambs. Bioscience Journal, 36, 496–506. https://doi.org/10.14393/BJ-v36n2a2020-39823.

  • Heckler, R.P., Borges, F.A., 2016. Climate variations and the environmental population of gastrointestinal nematodes of ruminants. Nematoda, 3, e012016. https://doi.org/10.4322/nematoda.00116.

  • Holden, L.A., 1999. Comparison of Methods of In Vitro Dry Matter Digestibility for Ten Feeds. Journal of Dairy Science, 82, 1791–1794. https://doi.org/10.3168/jds.s0022-0302(99)75409-3.

    Article  CAS  PubMed  Google Scholar 

  • Hoste, H., Torres-Acosta, J.F.J., Quijada, J., Chan-Perez, I., Dakheel, M.M., Kommuru, D., et al. 2016. Interactions Between Nutrition and Infections With Haemonchus contortus and Related Gastrointestinal Nematodes in Small Ruminants. Advances in Parasitology, 93, 239–351. https://doi.org/10.1016/bs.apar.2016.02.025.

    Article  CAS  PubMed  Google Scholar 

  • Instituto Nacional de Meteorologia– INMET. Ministério da Agricultura, Pecuária e Abastecimento. In: http://www.inmet.gov.br/portal/index.php?r=home/page&page=termo_uso. 2019.

  • Ítavo, L.C.V., Ítavo, C.C.B.F., Dias, A.M., Franco, G.L., Pereira, L.C., Leal, E.S., Araújo, H.S., Souza, A.R.D.L., 2016. Combinations of non-protein nitrogen sources in supplements for Nellore steers grazing. Revista Brasileira de Saúde e Produção Animal, 17, 448–460. https://doi.org/10.1590/S1519-99402016000300011.

    Article  Google Scholar 

  • Jacobson, C., Larsen, J.W., Besier, R.B., Lloyd, J.B., Kahn, L.P., 2020. Diarrhoea associated with gastrointestinal parasites in grazing sheep. Veterinary Parasitology, 282, 109139. https://doi.org/10.1016/j.vetpar.2020.109139.

  • Keith, R.K., 1953. The differentiation of infective larvae of some common nematode parasites of cattle. Australian Journal of Zoology, 1, 223-235. https://doi.org/10.1071/zo9530223.

    Article  Google Scholar 

  • Knapp-Lawitzke, F., Küchenmeister, F., Küchenmeister, K., Samson-Himmelstjerna, G., Demeler, J., 2014. Assessment of the impact of plant species composition and drought stress on survival of strongylid third-stage larvae in a greenhouse experimente. Parasitology Research, 113, 4123–4131. https://doi.org/10.1007/s00436-014-4084-5.

    Article  PubMed  Google Scholar 

  • Knox, M.R., Steel, J.W., 1999. The effects of urea supplementation on production and parasitological responses of sheep infected with Haemonchus contortus and Trichostrongylus colubriformis. Veterinary Parasitology, 83, 123–135. https://doi.org/10.1016/s0304-4017(99)00071-0.

    Article  CAS  PubMed  Google Scholar 

  • Mendes, C.Q., Fernandes, R.H.R., Susin, I., Pires, A.V., Gentil, R.S., 2010. Substituição parcial do farelo de soja por ureia ou amireia na alimentação de cabras em lactação. Revista Brasileira de Zootecnia, 39, 1818–1824. https://doi.org/10.1590/S1516-35982010000800026.

    Article  Google Scholar 

  • Mhomga, L.I., Nnadi, P.A., Chiejina, S.N., Idika, I.K., Ngongeh, L.A., 2012. Effects of dietary protein supplementation on the performances of West African Dwarf (WAD) goats infected with Haemonchus contortus and Trichostrongylus colubriformis. Turkish Journal of Veterinary & Animal Sciences, 36, 668-675. https://doi.org/10.3906/vet-1106-21.

    Article  CAS  Google Scholar 

  • Miranda, P.A.B., Fialho, M.P.F., Saliba, E.O.S., Oliveira, L.O.F., Costa, H.H.A., Lopes, V.E.S., Silva, J.J., 2015. Intake, degradability in situ and ruminal kinetics in cattle supplemented with different protein supplements. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 67, 573–582. https://doi.org/10.1590/1678-6934.

    Article  CAS  Google Scholar 

  • Molento, M.B., Buzatti, A., Sprenger, L.K., 2016. Pasture larval count as a supporting method for parasite epidemiology, population dynamic and control in ruminants. Livestock Science, 192, 48-54. https://doi.org/10.1016/j.livsci.2016.08.013.

    Article  Google Scholar 

  • Moraes, G.J., Ítavo, L.C.V., Ítavo, C.C.B.F., Dias, A.M., Niwa, M.V.G., Leal, E.S., Kozerski, N.D., Costa, M.C.M., Mata, D.G., Inada, A.C., 2019. Extruded urea could reduce true protein source in beef cattle diets. Journal of Animal Physiology and Animal Nutrition, 103, 1283-1294. https://doi.org/10.1111/jpn.13140.

    Article  CAS  PubMed  Google Scholar 

  • National Research Council – NRC., 2007. Nutrients requirements of small ruminantes. 1. ed. Washington: National Academies Press, pp. 362.

    Google Scholar 

  • Pegoraro, E.J., Poli, C.H.E.C., Carvalho, P.C.F., Gomes, M.J.T.M., Fischer, V., 2008. Manejo da pastagem de azevém, contaminação larval no pasto e infecção parasitária em ovinos. Pesquisa Veterinária Brasileira, 43, 1397-1403. https://doi.org/10.1590/S0100-204X2008001000019.

    Article  Google Scholar 

  • Quadros, D.G., Sobrinho, A.G.S., Rodrigues, L.R.A., Oliveira, G.P., Xavier, C.P., Andrade, A.P., 2012. Efeito de três espécies de gramíneas forrageiras sobre a estrutura da pastagem e distribuição vertical de larvas infectantes de nematódeos gastrintestinais de ovinos. Ciência Animal Brasileira, 13, 139-144. https://doi.org/10.5216/cab.v13i2.4973.

    Article  Google Scholar 

  • Roberto, F.F.S., Difante, G.S., Zaros, L.G., Souza, J.S., Gurgel, A.L.C., Costa, P.R., Medeiros, H.R., Silva, C.G., Borges, F.A., Ribeiro, N.L., 2020. The effect of Brachiaria brizantha cultivars on host-parasite-environment interactions in sheep naturally infected with gastrointestinal nematodes. Plos One, 15, e0238228. https://doi.org/10.1371/journal.pone.0238228.

  • Roberto, F.F.S., Lima Junior, V., Gurgel, A.L.C., Saraiva, W.A., Silva, Y.M.O., Silva, L.R.C., et al. 2018. Avaliação de resistência e susceptibilidade a nematódeos gastrintestinais em ovelhas a pasto. Boletim de Indústria Animal, 75, 44–51. https://doi.org/10.17523/bia.v75n1p44.

  • Roberts, F.H.S., O’Sullivan, S.P., 1950. Methods for egg counts and larvae cultures for strongyles infesting the gastrointestinal tract of cattle. Australian Journal of Agricultural Research, 1, 99-102. https://doi.org/10.1071/AR9500099.

    Article  Google Scholar 

  • Robertson, J.B., Van Soest, P.J., 1985. Analysis of forages and fibrous foods - a laboratory manual for animal science. Cornell University, Ithaca, NY.

    Google Scholar 

  • Rocha, R.A., Rocha, G.P., Bricarello, P.A., Amarante, A.F.T., 2008. Recovery of Trichostrongylus colubriformis infective larvae from three grass species contaminated in summer. Revista Brasileira de Parasitologia Veterinária, 17, 227-234.

    Article  PubMed  Google Scholar 

  • Romero, J.R., Boero, C.A., 2001. Epidemiología de la gastroenteritis verminosa de los ovinos en las regiones templadas y cálidas de la Argentina. Analecta Veterinaria, 21, 21-37.

    Google Scholar 

  • Russel, A.J.F., Doney, J.M., Gunn, R.G., 1969. Subjective assessment of body fat in live sheep. The Journal of Agricultural Science, 72, 451-454. https://doi.org/10.1017/s0021859600024874.

    Article  Google Scholar 

  • Salami, S.A., Devant, M., Apajalahti, J., Holder, V., Salomaa, S., Keegan, J.D., Moran, C.A., 2021. Slow-Release Urea as a Sustainable Alternative to Soybean Meal in Ruminant Nutrition. Sustainability. 13, 2464. https://doi.org/10.3390/su13052464

    Article  CAS  Google Scholar 

  • SAS Institute. Copyright © 2001 SAS Institute Inc., Cary, NC, USA.

  • Teixeira, P.C., Donagemma, G.K., Fontana, A., Teixeira, W.G., 2017. Manual de métodos de análise de solo. 3. ed. rev. e ampl. Brasília, DF: Embrapa, pp. 573.

  • Thorthwaite C.W., 1984. An approach toward a rational classification of climate. Geographical Review, 38, 55-93. https://doi.org/10.2307/210739.

    Article  Google Scholar 

  • Tilley, J.M.A., Terry, R.A., 1963. A two-stage technique for the in vitro digestion of forage crops. Grass and Forage Science, 18, 104–111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x.

    Article  CAS  Google Scholar 

  • Tontini, J.F., Poli, C.H.E.C., Bremm, C., Castro, J.M., Farjado, N.M., Sarout, B.N.M., et al. 2015. Distribution of infective gastrointestinal helminth larvae in tropical erect grass under different feeding systems for lambs. Tropical Animal Health and Production, 47., 1145–1152. https://doi.org/10.1007/s11250-015-0841-4.

    Article  PubMed  Google Scholar 

  • Tontini, J.F., Poli, C.H.E.C., Hampel, V.S., Farjado, N.M., Martins, A.A., Minho A.P., Muir, J.P., 2019. Dispersal and concentration of sheep gastrointestinal nematode larvae on tropical pastures. Small Ruminant Research, 174, 62–68. https://doi.org/10.1016/j.smallrumres.2019.03.013.

    Article  Google Scholar 

  • Ueno, H., Gonçalves, P.C., 1998. Manual para diagnóstico das helmintoses de ruminantes. 4. ed. Tokio: Japan Internacional Cooperation Agency, pp.143.

  • Van Wyk, J.A., Bath, G.F., 2002. The FAMACHA system for managing haemonchosis in sheep and goats by clinically identifying individual animals for treatment. Veterinary Research, 33, 509-529. https://doi.org/10.1051/vetres:2002036.

    Article  PubMed  Google Scholar 

  • Wallace, D.S., Bairden, K., Duncan, J.L., Eckersall, P.D., Fishwick, G., Gill, M., Holmes, P.H., McKellar, Q.A., Murray, M., Parkins, J.J., Stear, M.J., 1998. The influence of dietary supplementation with urea on resilience and resistance to infection with Haemonchus contortus. Parasitology. 116, 67-72. https://doi.org/10.1017/s0031182097001947.

    Article  CAS  PubMed  Google Scholar 

  • Waruiru, R.M., Ngotho, J.W., Mutune, M.N., 2004. Effect of urea-molasses block supplementation on grazing weaner goats naturally infected with gastrointestinal nematodes. Onderstepoort Journal of Veterinary Research, 71, 285-289. https://doi.org/10.4102/ojvr.v71i4.248.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y., Li, Z., Moraes, L.E., Shen, J., Yu, Z., Zhu, W., 2019. Effects of Incremental Urea Supplementation on Rumen Fermentation, Nutrient Digestion, Plasma Metabolites, and Growth Performance in Fattening Lambs. Animals, 9, 652. https://doi.org/10.3390/ani9090652.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

 We are grateful to the Federal University of Paraíba and the Federal University of Mato Grosso do Sul, through their Post Graduate Programs in Animal Science. This work was carried out with the support of the Coordination for the Improvement of Higher Education Personnel – Brazil (CAPES) – Financing Code 001, National Council for Scientific and Technological Development—(CNPq) and the Foundation for the Support of the Development of Teaching, Science and Technology of the State of Mato Grosso do Sul (FUNDECT).

Funding

This work was supported by Coordination for the Improvement of Higher Education Personnel—(CAPES)—Financing Code 001, National Council for Scientific and Technological Development—(CNPq), and the Foundation for the Support of the Development of Teaching, Science and Technology of the State of Mato Grosso do Sul (FUNDECT).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Francisca Fernanda da Silva Roberto: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Roles/Writing—original draft; Writing—review & editing., Gelson dos Santos Difante: Conceptualization; Funding acquisition; Project administration; Resources; Supervision and Validation; Roberto Germano Costa: Conceptualization; Data curation; Methodology; Roles/Writing—original draft; Fernando de Almeida Borges: Conceptualization; Data curation; Methodology; Roles/Writing—original draft;, Luis Carlos Vinhas Ítavo: Conceptualization; Supervision; Validation; Visualization; Roles/Writing—original draft, Camila Celeste Brandão Ferreira Ítavo: Conceptualization; Supervision; Validation; Visualization; Roles/Writing—original draft, Neila Lidiany Ribeiro: Investigation; Methodology; Validation; Visualization; Roles/Writing—original draft, Jéssica Gomes Rodrigues: Investigation; Methodology; Validation; Visualization; Roles/Writing—original draft, Marislayne de Gusmão Pereira: Investigation; Methodology; Validation; Visualization; Roles/Writing—original draft, Gabriela Oliveira de Aquino Monteiro: Investigation; Methodology; Validation; Visualization; Roles/Writing—original draft, Emmanuel Lievio de Lima Véras: Investigation; Methodology; Validation; Visualization; Roles/Writing—original draft, Antonio Leandro Chaves Gurgel: Data curation; Formal analysis; Software; Roles/Writing—original draft; Carolina Marques Costa Araujo: Writing—review & editing and Validation, Ana Beatriz Graciano da Costa: Data curation and Investigation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Carolina Marques Costa Araujo.

Ethics declarations

Ethics approval

The study was approved and conducted in accordance with the Ethics Committee on the Use of Animals—CEUA of the Federal University of Mato Grosso do Sul (UFMS), under protocol No. 0862/2017.

Statement of animal rights

The study was approved and conducted in accordance with the Ethics Committee on the Use of Animals—CEUA of the Federal University of Mato Grosso do Sul (UFMS), under protocol No. 0862/2017.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Roberto, F.F., dos Santos Difante, G., Costa, R.G. et al. Extruded urea levels in lamb supplementation in rainy tropical savanna conditions: the triad host-gastrointestinal nematodes-environment. Trop Anim Health Prod 55, 193 (2023). https://doi.org/10.1007/s11250-023-03607-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-023-03607-2

Keywords

Navigation