Skip to main content
Log in

Estimation of genetic parameters and inbreeding depression in Piau pig breed

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

This study is aimed at estimating genetic parameters, effective population size, inbreeding, and inbreeding depression for birth weight, weaning weight, and average pre-weaning daily weight gain (ADG) in Piau pigs. We used information from 3841 Piau pigs, and four linear models were fitted in single-trait analyses, including or excluding maternal genetic effect, common litter effect, or a combination. The adjustments of the models were compared using the likelihood ratio test, in which the model that presented the best fit for each trait was used to estimate the (co)variance components. The inbreeding depression effect was evaluated using a linear model that included the fixed effects of sex, parity order, contemporary group, and inbreeding coefficient as a fixed covariate. The weights at birth and weaning showed low direct heritabilities (0.08 and 0.05, respectively), while the ADG showed moderate heritability (0.20). The weight at birth showed high genetic correlations with the weight at weaning (0.90) and the ADG (0.82). The weight at weaning and the ADG also showed a high genetic correlation (0.99). There was an inbreeding increase over the generations and a reduction in the effective population size. In the last generation evaluated, all the animals were inbred, the average inbreeding coefficient was 0.07, and the effective population size was 20.8. A significant inbreeding effect on ADG was observed, where an increase of 1% in the inbreeding coefficient resulted in a decrease of 0.005 g in the ADG. Thus, increasing effective population size is mandatory for controlling inbreeding and reducing the loss of variability in this Piau pig population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data availability

The datasets analyzed during the current study are available from the corresponding author upon request.

References

  • Akanno EC, Schenkel FS, Quinton VM, Friendship RM, Robinson JAB (2013) Meta-analysis of genetic parameter estimates for reproduction, growth and carcass traits of pigs in the tropics. Livestock Science 152(2-3):101-113. https://doi.org/10.1016/j.livsci.2012.07.021

    Article  Google Scholar 

  • Albuquerque M, Ianella P (2016) Inventário de recursos genéticos animais da Embrapa. Embrapa Recursos Genéticos e Biotecnologia-Livro técnico (INFOTECA-E).

    Google Scholar 

  • Alderson GLH (2018) Conservation of breeds and maintenance of biodiversity: justification and methodology for the conservation of Animal Genetic Resources. Archivos de Zootecnia, 67(258). https://doi.org/10.21071/az.v67i258.3668

  • Alves K, Schenkel FS, Brito LF, Robinson A (2018a) Estimation of direct and maternal genetic parameters for individual birth weight, weaning weight, and probe weight in Yorkshire and Landrace pigs. Journal of Animal Science 96:2567–2578. https://doi.org/10.1093/jas/sky112

    Article  Google Scholar 

  • Alves K, Schenkel FS, Brito LF, Robinson JBA (2018b) Estimation of direct and maternal genetic parameters for individual birth weight and probe weight using cross-fostering information. Canadian Journal of Animal Science 98(3):548-556. https://doi.org/10.1139/cjas-2017-0137

    Article  Google Scholar 

  • Araújo GGA, Valentim JK, Marques OFC, Lopes IMG, de Souza JP, Maciel FR, Silva BAN (2020) Potencialidades e valorização da raça de suíno nativo Piau no contexto dos assentamentos de reforma agrária. RealizAção, 7(13), 145-154. https://doi.org/10.30612/realizacao.v7i13.11517

    Article  Google Scholar 

  • Bennewitz J, Simianer H, Meuwissen THE (2008) Investigations on merging breeds in genetic conservation schemes. Journal of Dairy Science 91(6):2512-2519. https://doi.org/10.3168/jds.2007-0924

    Article  CAS  Google Scholar 

  • Bermejo JVD, Martínez MAM, Galván, GR, Stemmer A, González FJN, Vallejo MEC (2019) Organization and Management of Conservation Programs and Research in Domestic Animal Genetic Resources. Diversity, 11(12), 235. https://doi.org/10.3390/d11120235

    Article  Google Scholar 

  • Castro STR., Albuquerque MSM, Germano JL (2002) Census of Brazilian naturalized swine breeds. Archivos de Zootecnia, 51(194), 235-239.

    Google Scholar 

  • Cavalcante Neto A, Silva LPG, Ribeiro MN, Lui JF, Barbosa JG, Castro STR, Souza GJG (2007) Censo e caracterização fenotípica de suínos de grupos genéticos naturalizados brasileiros existentes no Estado da Paraíba. Revista Biotemas, 20 (4): 123-126.

    Google Scholar 

  • Cavalcante Neto A, Lui JF, Sarmento JLR, Ribeiro MN, Monteiro JMC, Fonseca C, Tonhati H (2009) Estimation models of variance components for farrowing interval in swine. Brazilian Archives of Biology and Technology 52(1):69-76. https://doi.org/10.1590/S1516-89132009000100009

    Article  Google Scholar 

  • Curik, I., Ferenčaković, M., & Sölkner, J. (2014). Inbreeding and runs of homozygosity: a possible solution to an old problem. Livestock Science, 166, 26-34.

  • Darfour-Oduro KA, Naazie A, Ahunu BK, Aboagye GS (2009) Genetic parameter estimates of growth traits of indigenous pigs in Northern Ghana. Livestock Science 125(2-3):187-191. https://doi.org/10.1016/j.livsci.2009.04.007

    Article  Google Scholar 

  • Devi MV, Jayashankar MR (2014) Effect of inbreeding on the litter traits of large white yorkshire sows. Indian Journal of Veterinary and Animal Sciences Research 10(4):316-322.

    Google Scholar 

  • Falconer, DS, Mackay TFC (1996) Introduction to quantitative genetics. 4. ed. Harlow, Essex, UK: Longmans Green.

  • FAO – Food and Agriculture Organization (1998) Secondary Guidelines for Development of National Farm Animal Genetic Resources Management Plans: Management of small populations at risk. FAO, Rome.

    Google Scholar 

  • Fávero JA, de Figueiredo EAP (2009) Evolução do melhoramento genético de suínos no Brasil Revista Ceres, 56, 420–427.

  • Fix JS, Cassady JP, Holl JW, Herring WO, Culbertson MS, See MT (2010) Effect of piglet birth weight on survival and quality of commercial market swine. Livestock Science 132(1-3):98-106. https://doi.org/10.1016/j.livsci.2010.05.007

    Article  Google Scholar 

  • Gomes, MB and D’Aulísio, SHG (1980) Estudo da prolificidade da raça suína Piau Anais da Escola Superior de Agricultura Luiz de Queiroz 37, 179–208

  • Gowrimanokari KV, Thiagarajan R, Venkataramanan R, Gopi H (2019) Effect of inbreeding on pre-weaning and sow performance traits in Large White Yorkshire pigs. Indian Journal of Animal Research, 53(8), 997-1001. https://doi.org/10.18805/ijar.B-3623

    Article  Google Scholar 

  • Gutiérrez JP, Goyache F (2005) A note on ENDOG: a computer program for analysing pedigree information. Journal of Animal Breeding and Genetics 122:357–360. https://doi.org/10.1111/j.1439-0388.2005.00512.x

    Article  Google Scholar 

  • ILATSIA, ED, Githinji MG, Muasya TK, Okeno TK, Kahi AK (2008) Genetic parameter estimates for growth traits of Large White pigs in Kenya. South African Journal of Animal Science 38(3):166-173. https://doi.org/10.4314/sajas.v38i3.4131

    Article  Google Scholar 

  • Jordana J, Ferrando A, Marmi J, Avellanet R, Aranguren-Méndez JA, Goyache F (2010) Molecular, genealogical and morphometric characterisation of the Pallaresa, a Pyrenean relic cattle breed: insights for conservation. Livestock Science 132(1-3): 65-72. https://doi.org/10.1016/j.livsci.2010.05.004

    Article  Google Scholar 

  • Kaufmann D, Hofer A, Bidanel JP, Künzi N (2000) Genetic parameters for individual birth and weaning weight and for litter size of Large White pigs. Journal of Animal Breeding and Genetics 117(3):121-128. https://doi.org/10.1046/j.1439-0388.2000.00238.x

    Article  Google Scholar 

  • Mariante AS, Castro SRT, Albuquerque MSM, Paiva SR, Germano JL (2003) Pig biodiversity in Brazil. Archivos de Zootecnia 52(198):245-248.

    Google Scholar 

  • Mariante AS, Castro STR, Albuquerque MSD, Paiva SR, Germano JL (2005) Conservação de raças brasileiras ameaçadas de extinção e a importância de sua inserção em sistemas de produção. Agrociencia-Sitio en Reparación, v. 9, n. 1-2, p. 459-464.

    Google Scholar 

  • Meuwissen THE, Luo Z (1992) Computing inbreeding coefficients in large populations. Genetics Selection Evolution 24(4):305-313.

    Article  Google Scholar 

  • Misztal I (2002) REMLF90 Manual. http://nce.ads.uga.edu/~ignacy/numpub/blupf90/docs/remlf90.pdf. Accessed 15 march 2019.

  • Muns R, Manzanilla EG, Sol C, Manteca X, Gasa J (2013) Piglet behavior as a measure of vitality and its influence on piglet survival and growth during lactation. Journal of Animal Science 91( 4):1838-1843. https://doi.org/10.2527/jas.2012-5501

    Article  CAS  Google Scholar 

  • R CORE TEAM (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL <https://www.R-project.org/>.

  • Silva HT, Ferreira AS, Veroneze R, Lopes PS (2019) Evaluation of Bayesian models for analysis of crude protein requirement for pigs of Brazilian Piau breed. Scientia Agricola, 76(3), 208-213. https://doi.org/10.1590/1678-992x-2017-0256

    Article  CAS  Google Scholar 

  • Sollero BP, Paiva SR, Faria DA, Guimarães SEF, Castro STR, Egito AA, Albuquerque MSM, Piovezan U, Bertani GR, Mariante AS (2009) Genetic diversity of Brazilian pig breeds evidenced by microsatellite markers. Livestock Science 123:8–15. https://doi.org/10.1016/j.livsci.2008.09.025

    Article  Google Scholar 

  • Souza CA, Paiva SR, Pereira RW, Guimarães SEF, Dutra Jr WM, Murata LS, Mariante ADS (2009) Iberian origin of Brazilian local pig breeds based on Cytochrome b (MT-CYB) sequence. Animal Genetics, 40(5), 759-762. https://doi.org/10.1111/j.1365-2052.2009.01899.x

    Article  CAS  Google Scholar 

  • Saura M, Fernández A, Rodríguez MC, Toro MA, Barragán C, Fernández AI, Villanueva B (2013) Genome-wide estimates of coancestry and inbreeding in a closed herd of ancient Iberian pigs. PLoS One, 8(10), e78314.

  • Sprícigo JFW, Leme LO, Guimarães AL, Oliveira Neto JC, Silva PCP, Moreira NH, Pivato I, Silva BMD, Ramos AF, Dode MAN (2019) Phospholipid composition and resistance to vitrification of in vivo blastocyst of a Brazilian naturalized porcine breed. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 71(3):837-847. https://doi.org/10.1590/1678-4162-10249

    Article  Google Scholar 

  • Tomiyama M, Kanetani T, Tatsukawa Y, Mori H, Oikawa T (2010) Genetic parameters for preweaning and early growth traits in Berkshire pigs when creep feeding is used. Journal of Animal Science 88(3):879-884, 2010. https://doi.org/10.2527/jas.2009-2072

    Article  CAS  Google Scholar 

  • Toro MA, Caballero A (2005) Characterization and conservation of genetic diversity in subdivided populations. Phisiological Transactions of the Royal Society B: Biological Sciences 360(1459):1367-1378. https://doi.org/10.1098/rstb.2005.1680

    Article  CAS  Google Scholar 

  • Veroneze R, Lopes PS, Guimarães SEF, Guimarães JD, Costa EV, Faria VR, Costa KA (2014) Using pedigree analysis to monitor the local Piau pig breed conservation program. Archivos de Zootecnia 63(241):45-54.

    Article  Google Scholar 

  • Wurtz KE, Siegford JM, Bates RO, Ernst CW, Steibel JP (2017) Estimation of genetic parameters for lesion scores and growth traits in group-housed pigs. Journal of Animal Science 95(10):4310-4317. https://doi.org/10.2527/jas2017.1757

    Article  CAS  Google Scholar 

  • Zhang S, Bidanel JP, Burlot T, Legault C, Naveau J (2000) Genetic parameters and genetic trends in the Chinese× European Tiameslan composite pig line. I. Genetic parameters. Genetics Selection Evolution 32(1):41, 2000. https://doi.org/10.1186/1297-9686-32-1-41

    Article  CAS  Google Scholar 

Download references

Funding

We gratefully thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) for providing funding.

Author information

Authors and Affiliations

Authors

Contributions

LFO and RV conceived and designed the research. LFO conducted the analysis. HTS and DBDM contributed to understanding and discussing the results. LFO wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Letícia Fernanda de Oliveira.

Ethics declarations

Ethics approval

The approval of the animal care and use committee was not needed because this research used existing datasets.

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, L.F., Lopes, P.S., Dias, L.C.C.M. et al. Estimation of genetic parameters and inbreeding depression in Piau pig breed. Trop Anim Health Prod 55, 14 (2023). https://doi.org/10.1007/s11250-022-03428-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-022-03428-9

Keywords

Navigation