Skip to main content
Log in

Use of logistic models to evaluate the response of superovulation treatment and embryo production in Santa Inês ewes

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

The study aimed to verify the influence of the FecGE mutation in superovulated ewes and to evaluate the probability of logistic models to determine the response capacity of these ewes to superovulatory treatment. Santa Inês ewes (n = 29) were genotyped for the FecGE mutation and separated for their genotype group in carriers of the mutant E allele (FecGE/E, FecG+/E) and non-carrier (FecG+/+) alleles. The ewes underwent hormonal treatment for superovulation. Aside from the genotypes, variables included in the statistical model were reproductive status (empty, early lactation, or late lactation), age (> or < 6 years), and number of births (nulliparous, primiparous, multiparous). The carriers of the mutation could be discriminated from the non-carriers based on the number of corpora lutea, rate of frozen embryos, and fecundity. Recovery rate was significantly higher (P < 0.05) in FecGE/E (94.31%) compared to FecG+/E (63.15%) and FecG+/+ (61.90%) (P < 0.05), whereas fecundity rate of FecG+/+ ewes (50.76%) was significantly higher than FecG+/E (18.96%) and FecGE/E (32.53%) (P < 0.05). We determined in this study that the response to superovulation and embryo production can be discriminated between FecGE/E and FecG+/E ewes in relation to the FecG+/+ genotype. Logistic models that included reproductive status and mutation, or reproductive status and age, or reproductive status and number of births were effective in predicting the response to superovulatory treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The authors declare that the raw data used to elaborating this paper will not be available to the readers of this research paper.

Code availability

Not applicable.

References

  • Abdoli, R., Zamani, P., Mirhoseini, S.Z., Ghavi, Hossein‐Zadeh, N. Nadri, S.A., 2016. Review on prolificacy genes in sheep. Reproduction in Domestic Animals, 51, 631-637.

  • Armstrong, D.T., Evans, G., 1983. Factors influencing success of embryo transfer in sheep and goats. Theriogenology,19, 31-42.

    Article  CAS  Google Scholar 

  • Bartlewski, P.M., Seaton, P., Oliveira, M.E.F., Kridli, R.T., Murawski, M., Schwarz, T., 2016. Intrinsic determinants and predictors of superovulatory yields in sheep: circulating concentrations of reproductive hormones, ovarian status, and antral follicular blood flow. Theriogenology, 86, 130-143.

    Article  CAS  PubMed  Google Scholar 

  • Bindon, B.M., Piper, L.R., Cahill, L.P., Driancourt, M.A., O’Shea T., 1986. Genetic and hormonal factors affecting superovulation. Theriogenology, 25, 53-70.

    Article  Google Scholar 

  • Box, G.E., Cox, D.R., 1964. An analysis of transformations. Journal of the Royal Statistical Society: Series B, 26, 211-252.

    Google Scholar 

  • Brasil, O.O., Moreira, N.H., Santos Júnior, G., Silva, B.D.M., Mariante, A.S., Ramos, A.F., 2016. Superovulatory and embryo yielding in sheep using increased exposure time to progesterone associated with a GnRH agonist. Small Ruminant Research, 136, 54-58.

    Article  Google Scholar 

  • Cavalcanti, A.S., Brandão, F.Z., Nogueira, L.A.G., Fonseca, J.F., 2012. Effects of GnRH administration on ovulation and fertility in ewes subjected to estrous synchronization. Revista Brasileira de Zootecnia, 41, 1412-1418.

    Article  Google Scholar 

  • Chaves, M.S., Luz, V.B., Ferreira-Silva, J.C., Melo, E.O., Paiva, S.R., Barros, I., Bartolomeu, C.C., Azevedo, H.C., Oliveira, M.A.L., 2019. Ovarian and follicular variables used to determine ewes with different FecGE genotypes. Animal Reproduction Science, 208, 106-117.

    Article  Google Scholar 

  • Chaves, M.S., Passos, H.S., Luz, V.B., Ferreira-Silva, J.C., Melo, E.O., Paiva, S.R., Bartolomeu, C.C., Oliveira, M.A.L., Azevedo, H.C., 2019. Evaluation of morphology, morphometry and follicular dynamics in FecGE genotyped ewes. Theriogenology, 136, 138-142.

    Article  CAS  PubMed  Google Scholar 

  • Cognie, Y., Baril, G., Poulin, N., Mermillod, P., 2003. Current status of embryo technologies in sheep and goat. Theriogenology, 59, 171-188.

    Article  CAS  PubMed  Google Scholar 

  • Driancourt, M.A., Fry, R.C., 1992. Effect of superovulation with pFSH or PMSG on growth and maturation of the ovulatory follicles in sheep. Animal Reproduction Science, 27, 279-292.

    Article  CAS  Google Scholar 

  • Dufour, J.J., Cognie, Y., Mermillod, P., Mariana, J.C., Romain, R.F., 2000. Effects of the Booroola Fec gene on ovarian follicular populations in superovulated Romanov ewes pretreated with a GnRH antagonist. Journal of Reproduction and Fertility, 118, 85-94.

    Article  CAS  PubMed  Google Scholar 

  • Elvin, J.A., Yan, C., Wang, P., Nishimori, K., Matzuk, M.M., 1999. Molecular Characterization of the Follicle Defects in the Growth Differentiation Factor 9-Deficient Ovary. Molecular Endocrinology, 13, 1018-1034.

    Article  CAS  PubMed  Google Scholar 

  • Gibbons, A., Cueto, M., 2011. Reproductive biotechnologies for genetic improvement in sheep. Revista Brasileira de Reprodução Animal, 35, 180-185.

    Google Scholar 

  • Gode, F., Gulekli, B., Dogan, E., Korhan, P., Dogan, S., Bige, O., Cimrin, D., Atabey, N., 2011. Influence of follicular fluid GDF9 and BMP15 on embryo quality. Fertility and Sterility, 95, 2274-2278.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Bulnes, A., Souza, C.J.H., Campbell, B.K., Baird, D.T., 2004. Effect of ageing on hormone secretion and follicular dynamics in sheep with and without the Booroola gene. Endocrinology, 145, 2858-2864.

    Article  CAS  PubMed  Google Scholar 

  • Gootwine, E., Bor, A., Braw-Tal R., 1989. Plasma FSH levels and ovarian response to PMSG in ewe lambs of related genotypes that differ in their prolificacy. Animal Reproduction Science, 19, 09-116.

    Article  Google Scholar 

  • Gordon, K., Renfree, M.B., Short, R.V., Clarke, I.J., 1987. Hypothalamo-pituitary portal blood concentrations of ß-endorphin during suckling in the ewe. Journal of Reproduction and Fertility, 70, 397-408.

    Article  Google Scholar 

  • Henry, M., Neves, J.P., Jobim, M.I.M., 2013. Manual para exame andrológico e avaliação do sêmen animal. CBRA, Belo Horizonte, 3nd ed.

  • Kühholzer, B., Brem, G., 1999. In vivo development of microinjected embryos from superovulated prepuberal slaughter lambs. Theriogenology, 51, 1297-1302.

    Article  PubMed  Google Scholar 

  • Lehloenya, K.C., Greyling, J.P.C., 2010. The effect of embryo donor age and parity on the superovulatory response in Boer goat does. South African Journal of Animal Science, 40, 65-69.

    Article  Google Scholar 

  • McNatty, K.P., Smith, P., Moore, L.G., Reader, K., Lun, S., Hanrahan, J.P., Groome, N.P., Laitinen, M., Ritvos, O., Juengel, J.L., 2005. Oocyte-expressed genes affecting ovulation rate. Molecular and Cellular Endocrinology, 29, 57-66.

    Article  Google Scholar 

  • Menchaca, A., Vilariño, M., Crispo, M., De Castro, T., Rubianes, E., 2009. New approaches to superovulation and embryo transfer in small ruminants. Reproduction, Fertility and Development, 22, 113-118.

    Article  Google Scholar 

  • Mitchell, L.M., King, M.E., Gebbie, F.E., Ranilla, M.J., Robinson, J.J., 1998. Resumption of oestrous and ovarian cyclicity during the post-partum period in autumn-lambing ewes is not influenced by age or dietary protein content. Animal Science, 67, 65-72.

    Article  Google Scholar 

  • Moraes, J.C.F., Souza, C.J.H., 2017. Ewes carrying the Booroola and Vacaria prolificacy alleles respond differently to ovulation induction with equine chorionic gonadotrophin. Genetics and Molecular Research, 16, 1-8.

    Article  Google Scholar 

  • Morales, G., Pro, A., Figueroa, B., Sánchez, C., Gallegos, J., 2004. Amamantamiento continuo o restringido y su relación con la duración del anestro postparto en ovejas Pelibuey. Agrociencia, 38, 165-171.

    Google Scholar 

  • Pinto, P.H.N., Balaro, M.F.A., Arashiro, E.K.N., Batista, R.I.T.P., Oliveira, M.E.F., Bragança, G.M., Fonseca, J.F., Brandão, F.Z., 2017. Produção in vivo de embriões ovinos. Revista Brasileira de Reprodução Animal, 41, 208-216.

    Google Scholar 

  • Pinto, P.H.N., Balaro, M.F.A., Souza-Fabjan, J.M.G., Ribeiro, L.D.S., Bragança, G.M., Leite, C.R., Arashiro E.K.N., Moraes, S.K., Da Fonseca, J.F., Brandão, F.Z.,2018. Anti-Müllerian hormone and antral follicle count are more effective for selecting ewes with good potential for in vivo embryo production than the presence of FecGE mutation or eCG pre-selection tests. Theriogenology, 113, 146-152.

    Article  CAS  PubMed  Google Scholar 

  • Quirke, J.F., Meyer, H.H., Lahlou-Kassi, A., Hanrahan, J.P., Bradfords, G.E., Stabenfeldt, G.H., 1987. Natural and induced ovulation rate in prolific and non-prolific breeds of sheep in Ireland, Morocco and New Zealand. Journal of Reproduction and Fertility, 81, 309-316.

    Article  CAS  PubMed  Google Scholar 

  • Santos, R.M., Vasconcelos, J.L.M., 2007. Efeito do intervalo entre recrutamentos foliculares na superovulação de vacas da raça Holandesa não-lactantes. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 59, 844-850.

    Article  CAS  Google Scholar 

  • Scaramuzzi, R.J., Radford, H.M.,1983. Factors regulating ovulation rate in the ewe. Journal of Reproduction and Fertility, 69, 353-367.

    Article  CAS  PubMed  Google Scholar 

  • Scaramuzzi, R.J., Adams, N.R., Baird, D.T., Campbell, B.K., Downing, J.A., Findlay, J.K., Henderson, K.M., Martin, G.B., McNatty, K.P., McNeilly, A.S., Tsonis, C.G., 1993. A model for follicule selection and the determination of ovulation rate in the ewe. Reproduction, Fertility and Development, 5, 459-478.

    Article  CAS  Google Scholar 

  • Scaramuzzi, R.J., Baird, D.T., Campbell, B.K., Driancourt, M.A., Dupont, J., Fortune, J.E., Gilchrist, R.B., Martin, G.B., McNatty, K.P., McNeilly, A.S., Monget, P., Monniaux, D. (2011). Regulation of folliculogenesis and the determination of ovulation rate in ruminants. Reproduction, Fertility and Development, 23, 444-467.

    Article  CAS  Google Scholar 

  • Short, R.E., Adams, D.C., 1988. Nutritional and hormonal interrelationships in beef cattle reproduction. Canadian Journal of Animal Science, 68, 29-39.

    Article  CAS  Google Scholar 

  • Silva, B.D.M., Castro, E.A., Souza, C.J., Paiva, S.R., Sartori, R., Franco, M.M., Azevedo, H.C., Silva, T.A., Vieira, A.M., Neves, J.P., Melo, E.O., 2011. A new polymorphism in the Growth and Differentiation Factor 9 (GDF9) gene is associated with increased ovulation rate and prolificacy in homozygous sheep: New polymorphism in GDF9 and prolificacy. Animal Genetics, 42, 89-92.

    Article  CAS  PubMed  Google Scholar 

  • Souza, C.J.H., Moraes, J.C.F., 1993. Biologia reprodutiva da linhagem merino booroola: um modelo experimental para estudos relativos à ovulação dos ovinos. Ciência Rural, 23, 391-398.

    Article  Google Scholar 

  • Spice, L.J., Aad, P.Y., Allen, D., Mazerbourg, S., Hsueh, A.J., 2006. Growth differentiation factor-9 has divergent effects on proliferation and steroidogenesis of bovine granulosa cells. Journal of Endocrinology, 189, 329-339.

    Article  Google Scholar 

  • Su, Y.Q., Sugiura, K., Eppig J.J., 2009. Mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism. Seminars in Reproductive Medicine, 27, 32-42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiura, K., Eppig, J.J., 2005. Control of metabolic cooperativity between oocytes and their companion granulosa cells by mouse oocytes. Reproduction, Fertility and Development, 17, 667-674.

    Article  CAS  Google Scholar 

  • Sutton, M.L., Gilchrist, R.B., Thompson, J.G., 2003. Effects of in-vivo and in-vitro environments on the metabolism of the cumulus–oocyte complex and its influence on oocyte developmental capacity. Human Reproduction Update, 9, 35-48.

    Article  CAS  PubMed  Google Scholar 

  • Torres, S., Cognie, Y., Colas, G., 1987. Transfer of superovulated sheep embryos obtained with different FSH-P. Theriogenology, 27, 407-419.

    Article  CAS  PubMed  Google Scholar 

  • Viñoles, C., Forsberg, M., Martin, G.B., Cajarville, C., Repetto, J., Meikle, A., 2005. Short-term nutritional supplementation of ewes in low body condition affects follicle development due to an increase in glucose and metabolic hormones. Reproduction, 129, 299-309.

    Article  PubMed  Google Scholar 

  • Yeo, C.X., Gilchrist, R.B., Thompson, J.G., Lane, M., 2007. Exogenous growth differentiation factor 9 in oocyte maturation media enhances subsequent embryo development and fetal viability in mice. Human Reproduction, 23, 67-73.

    Article  PubMed  Google Scholar 

Download references

Funding

The study was financially supported, granted as a scholarship, by the Coordination for the Improvement of Higher Education Personnel (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES) of Brazil, Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

Maiana S. Chaves: conceptualization, methodology, investigation, and writing of the original draft; Alexandre F. Ramos and Nathalia H. M. Brasil: methodology and formal analysis; José C. Ferreira-Silva: support on writing; Samuel R. Paiva: ewe genotyping; Eduardo O. Melo: ewe genotyping; Inácio Barros: statistical analysis; Vicente José F. Freitas: support on the review and editing of the original draft; Valdir R. Junior: statistical analysis; Cláudio C. Bartolomeu: support on writing; Marcos A. L. Oliveira: support on the review and editing of the original draft editing of the original draft; Hymwrson C. Azevedo: supervision, support on the review, and editing of the original draft.

Corresponding author

Correspondence to Hymerson Costa Azevedo.

Ethics declarations

Ethics approval

This research was conducted after evaluation and approval from the Committee of Ethics in Animal Use, Brazilian Agricultural Research Company—Embrapa, Tabuleiros Costeiros Unit, Aracaju-SE, Brazil (License: 13072016.006).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaves, M.S., Ramos, A.F., Brasil, N.H.M. et al. Use of logistic models to evaluate the response of superovulation treatment and embryo production in Santa Inês ewes. Trop Anim Health Prod 54, 276 (2022). https://doi.org/10.1007/s11250-022-03310-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-022-03310-8

Keywords

Navigation