Skip to main content
Log in

Cassava starch factory residues in the diet of slow-growing broilers

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the effect of inclusion of dehydrated cassava starch residue (DCSR) on the performance, gastrointestinal tract characteristics and carcass traits of ISA Label JA57 slow-growing broilers. A total of 510 broilers at 21 were distributed in a randomized experimental design with 5 treatments (2, 4, 6, 8, and 10 % DCSR inclusion) and a control group, 5 replicates, and 17 birds per experimental unit. The DCSR inclusion from 21 to 49 days of age negatively influenced (P < 0.05) weight gain and feed intake and did not affect (P > 0.05) feed conversion in the broilers with increasing of DCSR inclusion. From 21 to 79 days, DCSR inclusion impaired (P < 0.05) weight gain, feed conversion, and poultry litter quality with increasing of DCSR inclusion. The level of blood triglycerides showed a quadratic response (P < 0.05) at 79 days of age with the highest value predicted to occur at 5.45 % of DCSR inclusion. DCSR levels affected (P < 0.05) the gastrointestinal organ characteristics, cecal content pH, and pigmentation of the shank, breast, and thigh meat of the birds but did not alter (P > 0.05) the other parameters of carcass quality and yield, cuts, and percentage of abdominal fat. In conclusion, DCSR inclusion levels above 2 % compromised broiler performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aro, S.O., Aletor, V.A., Tewe, O.O., Agbede, J.O., 2010. Nutritional potentials of cassava tuber wastes: A case study of a cassava starch processing factory in south-western Nigeria. Livestock Research for Rural Development, 22, 11. Available at: < http://www.lrrd.org/lrrd22/11/aro22213.htm> Accessed on: March 6, 2014.

  • Borin, K., Lindberg, J.E., Ogle, R.B., 2006. Digestibility and digestive organ development in indigenous and improved chickens and ducks fed diets with increasing inclusion levels of cassava leaf meal. Journal of Animal Physiology and Animal Nutrition, 90, 230–237.

    Article  CAS  PubMed  Google Scholar 

  • Chau, Chi-Fai, Chen, Chien-Hung, Wang, Yi-Ting., 2004. Effects of a novel pomace fiber on lipid and cholesterol metabolism in the hamster. Journal of Nutrition Research, 24, 337–345.

    Article  CAS  Google Scholar 

  • Chauynarong, N., Elangovan, A.V., Iji, P.A., 2009. The potential of cassava products in diets for poultry. World’s Poultry Science Journal, 65, 24–36.

    Article  Google Scholar 

  • Chávez, A.L., Sánchez, T., Jaramillo, G., Bedoya, J.M., Echeverry, J., Bolaños, E.A., Ceballos, H., Iglesias, C.A., 2005. Variation of quality traits in cassava roots evaluated in landraces and improved clones. Euphytica, 143, 125–133.

    Article  Google Scholar 

  • Delaney, B., Nicolosi, R.J., Wilson, T.A., Carlson, T., Frazer, S., Zheng, G-H., Hess, R., Ostergren, K., Haworth, J., Knutson, N., 2003. β-Glucan fractions from barley and oats are similarly antiatherogenic in hypercholesterolemic Syrian golden hamsters. Journal of Nutrition, 133, 2, 468–475.

    PubMed  Google Scholar 

  • Dunkley, K.D., Dunkley, C.S., Njongmeta, N.L., Callaway, T.R., Hume, M.E., Kubena, L.F., Nisbet, D.J., Ricke, S.C., 2007. Comparison of in vitro fermentation and molecular microbial profiles of high-fiber feed substrates incubated with chicken cecal inocula. Poultry Science, 86, 5, 801–810.

    Article  CAS  PubMed  Google Scholar 

  • Eufrásio, M.R., Barcelos, M.F.P., Sousa, R.V., Abreu, W.C., Lima, M.A.C., Pereira, M.C.A., 2009. Efeito de diferentes tipos de fibras sobre frações lipídicas do sangue e fígado de ratos Wistar. Ciência e Agrotecnologia, 33, 6, 1608–161.

    Article  Google Scholar 

  • Fasina, Y.O., Garlich, J.D., Classen, H.L., Ferket, P.R., Havenstein, G.B., Grimes, J.L., Qureshi, M.A., Christensent, V.L., 2004. Response of turkey poults to soybean lectin levels typically encountered in commercial diets - Effect on growth and nutrient digestibility. Poultry Science, 83, 9, 1559–1571.

    Article  CAS  PubMed  Google Scholar 

  • Forder, R.E., Howarth, G.S., Tivey, D.R., Hughes, R.J., 2007. Bacterial modulation of small intestinal goblet cells and mucin composition during early posthatch development of poultry. Poultry Science, 86, 11, 2396–2403.

    Article  CAS  PubMed  Google Scholar 

  • Fronning, G.W. and Uijttenboogaart, T.G., 1988. Effect of post mortem electrical stimulation on color, texture, pH and cooking loses of hot and cold deboned chicken broiler breast meat. Poultry Science, 67, 1536–1544.

    Article  Google Scholar 

  • Furr, H.C. and Clark, R.M., 1997. Intestinal absorption and tissue distribution of carotenoids. Journal of Nutritional Biochemistry, 8, 7, 364–377.

    Article  CAS  Google Scholar 

  • Garcia, M. and Dale. N., 1999. Cassava root meal for poultry. Journal of Applied Poultry Research, 8, 1, 132–137.

  • George, O.S. and Sese, B.T., 2012. The effects of whole cassava meal on broiler carcass weight and the optimal inclusion rate of whole cassava meal in broiler production. Advances in Agriculture, Sciences and Engineering Research, 2, 6, 184–189.

    Google Scholar 

  • González-Alvarado, J.M., Jiménez-Moreno, E., Valencia, D.G., Mateos, G.G., 2007. Effect of type of cereal, heat processing of the cereal, and inclusion of fiber in the diet on productive performance and digestive traits of broilers. Poultry Science, 86, 8, 1705–1715.

    Article  PubMed  Google Scholar 

  • Harjes, C.E., Rocheford, T.R., Bai, L., Brutnell, T.P., Kandianis, C.B., Sowinski, S.G., Stapleton, A.E., Vallabhaneni, R., Williams, M., Wurtzel, E.T., Yan, J., Buckler, E.S., 2008. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science Journals, 319, 330–333.

    CAS  Google Scholar 

  • Honikel, K.O., 1998. Reference methods for the assessment of physical characteristics of meat. Journal Meat Science, 49, 447–457

    Article  CAS  Google Scholar 

  • Huyen, L.V., Len, N.T., Phung, N.T., 2007. Effect of supplementation of cassava residue meal in diets on the growth performance of Luong phuong broilerst. Proceedings…MEKARN Regional Conference 2007: Matching Livestock Systems with Available Resources. In: Preston, R., Ogle, B. (Eds.) Halong Bay, Vietnam, 25–28 November 2007. Available at: <http://www.mekarn.org/prohan/huyen.htm> Accessed on: Nov. 28, 2013.

  • Iji, P.A. 1999. The impact of cereal non-starch polysaccharides on intestinal development and function in broiler chickens. Worlds Poultry Science Journal, 55, 375–388.

    Article  Google Scholar 

  • Jiménez-Moreno, E., Frikha, M., Coca-Sinova, A., García, J., Mateos, G.G., 2013. Oat hulls and sugar beet pulp in diets for broilers 1. Effects on growth performance and nutrient digestibility. Animal Feed Science and Technology, 182, 1, 33–43.

    Article  Google Scholar 

  • Jimenez-Vergara, M.; Furr, H.; FErnandez, M.L., 1999. Pectin and psyllium decrease the susceptibility of LDL to oxidation in guinea pigs. Journal of Nutritional Biochemistry, 10, 2, 118–124.

  • Józefiak, D., Rutkowski, A., Martin, S.A., 2004. Carbohydrate fermentation in the avian ceca: a review. Animal Feed Science and Technology, 113, 1–15.

    Article  Google Scholar 

  • Lee, K.W., Everts, H., Kappert, H.J., Van Der Kuilen, J., Lemmens, A.G., Frehner, M., Beynen, A.C., 2004. Growth performance, intestinal viscosity, fat digestibility and plasma cholesterol in broiler chickens fed a rye-containing diet without or with essential oil components. Journal of Poultry e Science, 3, 9, 613–618.

    Article  Google Scholar 

  • Leonel, M., Cereda, M.P., Roaux, X., 1998. Cassava bagasse as dietary product. Tropical Science, 38, 224–228.

  • Mateos, G., Jiménez-Moreno, E., Serrano, M.P., Lázaro, R.P., 2012. Poultry response to high levels of dietary fiber sources varying in physical and chemical characteristics. Journal of Applied Poultry Research, 21, 156–174.

    Article  CAS  Google Scholar 

  • Nakamura, M. and Katok, K., 1985. Influence of thawing method on several properties of rabbit meat. Bulletin of Ishika Prefecture College of Agriculture, 11, 45–49.

    Google Scholar 

  • Olivo, R., Soares, A. L., Ida, E. I., SHimokomaki, M., 2001. Dietary vitamin E inhibits poultry PSE and improves meat functional properties. Journal of Food Biochemistry, 25, 4, 271–283.

  • Pandey, A., Soccol, C. R., Nigam, P., Soccol, V. T., Vandenbergue, L. P. S., Mohan, R., 2000. Botechnological potencial of agro-industrial residue II: Cassava bagasse. Bioresource Technology, 74, 81–87.

    Article  CAS  Google Scholar 

  • Richards, M.P., 2003. Genetic regulation of feed intake and energy balance in poultry. Poultry Science, 82, 907–916.

    Article  CAS  PubMed  Google Scholar 

  • Rostagno, H.S., Albino, L.F.T., Donzele, J.L., Gomes, P.C., Lopes, D.C., Ferreira, A.S., Barreto, S.L.T., Euclides, R.F., 2011. Tabelas brasileiras para aves e suínos: composição de alimentos e exigências nutricionais. Viçosa MG: Universidade Federal de Viçosa, Departamento de Zootecnia, p.186.

  • Sacranie, A., Svihus, B., Denstadli, V., Moen, B., Iji, P.A., Choct, M., 2012. The effect of insoluble fiber and intermittent feeding on gizzard development, gut motility, and performance of broiler chickens. Poultry Science, 91, 3, 693–700.

    Article  CAS  PubMed  Google Scholar 

  • SAEG, 1997. Sistema para análises estatísticas, versão 7.0.UFV, Viçosa: Fundação Arthur Bernardes.

    Google Scholar 

  • Sarikhan, M., Shahryar, H.A., Nazer-Adl, K., Gholizadeh, B., Behesht, B., 2009. Effects of insoluble fiber on serum biochemical characteristics in broiler. International Journal of Agriculture and Biology, 11, 1, 73–76.

    CAS  Google Scholar 

  • Savón, L., 2002. Alimentos altos en fibra para especies monogástricas. Caracterización de la matriz fibrosa y sus efectos en la fisiología digestiva. Revista Cubana de Ciencia Agrícola, 36, 2, 91–102.

    Google Scholar 

  • Silva, D.J. and Queiroz, A.C., 2004. Análise de alimentos - métodos químicos e biológicos. 3ª,ed, Viçosa, Universidade Federal de Viçosa, 235p.

  • Smith, A., Rose, S.P., Wells, R.G., Pirgozliev, V., 2000. Effect of excess dietary sodium, potassium, calcium and phosphorus on excreta moisture of laying hens. British Poultry Science, 41, 5, 598–607.

    Article  CAS  PubMed  Google Scholar 

  • Svihus, B., Sacranie, A., Choct, M., 2010. The effect of intermittent feeding and dietary whole wheat on performance and digestive adaptation in broiler chickens. Poultry Science, 89, 12, 2617–2625.

    Article  CAS  PubMed  Google Scholar 

  • Van Laak, R.L.J.M., Liu, C.H., Smith, M.O., Loveday, H.B.D., 2000. Characteristics of pale, soft, exudative broiler breast meat. Poultry Science, 79, 7, 1057–1061.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by National Counsel of Technological and Scientific Development (CNPq) and Coordination for the Improvement of Higher Education Personnel (CAPES), Brazil.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karla Paola Picoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Picoli, K.P., Murakami, A.E., Nunes, R.V. et al. Cassava starch factory residues in the diet of slow-growing broilers. Trop Anim Health Prod 46, 1371–1381 (2014). https://doi.org/10.1007/s11250-014-0649-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-014-0649-7

Keywords

Navigation