Skip to main content
Log in

Substantiating the Process Parameters of Frictional Treatment with a Sliding Indenter for an Austenitic Chromium-Nickel Steel

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Based on the study of the interaction in the “indenter—steel” contact zone, the choice of process parameters of the frictional treatment with a sliding indenter, namely, indenter material, load, and process medium, was carried out and substantiated for the 12Cr18Ni10Ti austenitic steel. Scanning electron microscopy, energy-dispersive microanalysis, optical profilometry and microhardness measurement are used as methods of investigation. It has been discovered that the choice of the process parameters of frictional treatment with a sliding indenter must be carried out taking into account mass transfer of the steel onto the indenter surface. The combination of significant strain hardening and low surface roughness was employed as a criterion for stating the advantages of using a synthetic diamond indenter and a noncorrosive argon environment over using natural diamond (conventional diamond burnishing), WC–Co hard alloy, and dense boron nitride indenters in the presence of a lubricating and cooling liquid. In the case of a synthetic diamond indenter and a noncorrosive argon environment, microhardness increased from 220 to 590–685 HV0.025, with a surface roughness of Ra = 0.075–0.115 μm. In the other cases, microhardness increased to 515, 635, and 660 HV0.025, with a surface roughness of Ra = 0.060, 0.380, and 0.255 μm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Li, W.L., Tao, N.R., Lu, K.: Fabrication of a gradient nano-micro-structured surface layer on bulk copper by means of a surface mechanical grinding treatment. Scr. Mater. 59(5), 546–549 (2008). https://doi.org/10.1016/j.scriptamat.2008.05.003

    Article  CAS  Google Scholar 

  2. Makarov, A.V., Savrai, R.A., Pozdejeva, N.A., Smirnov, S.V., Vichuzhanin, D.I., Korshunov, L.G., Malygina, I.Yu.: Effect of hardening friction treatment with hard-alloy indenter on microstructure, mechanical properties, and deformation and fracture features of constructional steel under static and cyclic tension. Surf. Coat. Technol. 205(3), 841–852 (2010). https://doi.org/10.1016/j.surfcoat.2010.08.025

    Article  CAS  Google Scholar 

  3. Baraz, V.P., Kartak, B.P., Mineeva, O.N.: Special features of friction hardening of austenitic steel with unstable gamma-phase. Met. Sci. Heat Treat. 52(9–10), 473–475 (2011). https://doi.org/10.1007/s11041-010-9302-x

    Article  CAS  ADS  Google Scholar 

  4. Vychuzhanin, D.I., Makarov, A.V., Smirnov, S.V., Pozdeeva, N.A., Malygina, I.Yu.: Stress and strain and damage during frictional strengthening treatment of flat steel surface with a sliding cylindrical indenter. J. Mach. Manuf. Reliab. 40(6), 554–560 (2011). https://doi.org/10.3103/S1052618811050190

    Article  Google Scholar 

  5. Fang, T.H., Tao, N.R., Lu, K.: Tension-induced softening and hardening in gradient nanograined surface layer in copper. Scr. Mater. 77, 17–20 (2014). https://doi.org/10.1016/j.scriptamat.2014.01.006

    Article  CAS  Google Scholar 

  6. Makarov, A.V., Skorynina, P.A., Osintseva, A.L., Yurovskikh, A.S., Savrai, R.A.: Improving the tribological properties of austenitic 12Kh18N10T steel by nanostructuring frictional treatment. Metal Work. Mater. Sci. 4, 80–92 (2015). https://doi.org/10.17212/1994-6309-2015-4-80-92

    Article  Google Scholar 

  7. Savrai, R.A., Makarov, A.V., Malygina, I.Y., Rogovaya, S.A., Osintseva, A.L.: Improving the strength of the AISI 321 austenitic stainless steel by frictional treatment. Diagn. Resour. Mech. Mater. Struct. 5, 43–62 (2017). https://doi.org/10.17804/2410-9908.2017.5.043-062

    Article  Google Scholar 

  8. Makarov, A.V., Skorynina, P.A., Yurovskikh, A.S., Osintseva, A.L.: Effect of the conditions of the nanostructuring frictional treatment process on the structural and phase states and the strengthening of metastable austenitic steel. Phys. Met. Metallogr. 118(12), 1225–1235 (2017). https://doi.org/10.1134/S0031918X17120092

    Article  CAS  ADS  Google Scholar 

  9. Makarov, A.V., Soboleva, N.N., Malygina, I.Yu.: Thermal stability of a laser-clad NiCrBSi coating hardened by frictional finishing. AIP Conf. Proc. 1915, 030012 (2017). https://doi.org/10.1063/1.5017332

    Article  CAS  Google Scholar 

  10. Narkevich, N.A., Mironov, Y.P., Shulepov, I.A.: Structure, mechanical, and tribotechnical properties of an austenitic nitrogen steel after frictional treatment. Phys. Met. Metallogr. 118(4), 399–406 (2018). https://doi.org/10.1134/S0031918X17020090

    Article  ADS  Google Scholar 

  11. Savrai, R.A., Makarov, A.V., Malygina, I.Y., Volkova, E.G.: Effect of nanostructuring frictional treatment on the properties of high-carbon pearlitic steel—part I: microstructure and surface properties. Mater. Sci. Eng. A 734, 506–512 (2018). https://doi.org/10.1016/j.msea.2018.07.099

    Article  CAS  Google Scholar 

  12. Makarov, A.V., Korshunov, L.G.: Metallophysical foundations of nanostructuring frictional treatment of steels. Phys. Met. Metallogr. 120(3), 303–311 (2019). https://doi.org/10.1134/S0031918X18120128

    Article  CAS  ADS  Google Scholar 

  13. Makarov, A.V., Savrai, R.A., Skorynina, P.A., Volkova, E.G.: Development of methods for steel surface deformation nanostructuring. Met. Sci. Heat Treat. 62(1–2), 61–69 (2020). https://doi.org/10.1007/s11041-020-00513-4

    Article  CAS  ADS  Google Scholar 

  14. Baraz, V.R., Estemirova, S.Kh., Ishina, E.A., Kopichnikova, P.I.: Effect of frictional treatment on structure and hardening of beryllium bronze. Upr. Tehnol. Pokr. 16(4), 156–160 (2020)

    Google Scholar 

  15. Putilova, E.A., Goruleva, L.S., Zadvorkin, S.M.: Effect of frictional treatment of the AISI 321 steel on the change of its hardness and magnetic characteristics. Diagn. Resour. Mech. Mater. Struct. 5, 40–49 (2022). https://doi.org/10.17804/2410-9908.2022.5.040-049

    Article  Google Scholar 

  16. Savrai, R.A., Osintseva, A.L.: Effect of hardened surface layer obtained by frictional treatment on the contact endurance of the AISI 321 stainless steel under contact gigacycle fatigue tests. Mater. Sci. Eng. A 802, 140679 (2021). https://doi.org/10.1016/j.msea.2020.140679

    Article  CAS  Google Scholar 

  17. Kuznetsov, V.P., Makarov, A.V., Osintseva, A.L., Yurovskikh, A.S., Savrai, R.A., Rogovaya, S.A., Kiryakov, A.E.: The increase of strength and surface quality of austenitic stainless steel parts by diamond burnishing on the turning/ milling center. Upr. Tehnol. Pokr. 11, 16–26 (2011)

    Google Scholar 

  18. Kuznetsov, V.P., Smolin, I.Yu., Dmitriev, A.I., Konovalov, D.A., Makarov, A.V., Kiryakov, A.E., Yurovskikh, A.S.: Finite element simulation of nanostructuring burnishing. Phys. Mesomech. 16(1), 62–72 (2013). https://doi.org/10.1134/S1029959913010074

    Article  Google Scholar 

  19. Kuznetsov, V.P., Makarov, A.V., Psakhie, S.G., Savrai, R.A., Malygina, I.Yu., Davydova, N.A.: Tribological aspects in nanostructuring burnishing of structural steels. Phys. Mesomech. 17(4), 250–264 (2014). https://doi.org/10.1134/S102995991404002X

    Article  Google Scholar 

  20. Kuznetsov, V.P., Smolin, I.Yu., Dmitriev, A.I., Tarasov, S.Yu., Gorgots, V.G.: Toward control of subsurface strain accumulation in nanostructuring burnishing on thermostrengthened steel. Surf. Coat. Technol. 285, 171–178 (2016). https://doi.org/10.1016/j.surfcoat.2015.11.045

    Article  CAS  Google Scholar 

  21. Kuznetsov, V.P., Skorobogatov, A.S., Lobanov, M.L., Yurovskih, A.S., Khadyev, M.S., Karabanalov, M.S.: Effects of sliding velocity and thermal conduction of the tool on X20Cr4 steel friction coefficient and structure in nanostructuring burnishing. IOP. Conf. Ser. 1045, 012002 (2018). https://doi.org/10.1088/1742-6596/1045/1/012002

    Article  CAS  Google Scholar 

  22. Maximov, J.T., Duncheva, G.V., Anchev, A.P., Ganev, N., Amudjev, I.M., Dunchev, V.P.: Effect of slide burnishing method on the surface integrity of AISI 316Ti chromium–nickel steel. J. Braz. Soc. Mech. Sci. Eng. 40, 194 (2018). https://doi.org/10.1007/s40430-018-1135-3

    Article  CAS  Google Scholar 

  23. Sachin, B., Narendranath, S., Chakradhar, D.: Analysis of surface hardness and surface roughness in diamond burnishing of 17–4 PH stainless steel. IOP. Conf. Ser. 577, 012075 (2019). https://doi.org/10.1088/1757-899X/577/1/012075

    Article  CAS  Google Scholar 

  24. Kuznetsov, V.P., Makarov, A.V., Skorobogatov, A.S., Skorynina, P.A., Luchko, S.N., Sirosh, V.A., Chekan, N.M.: Normal force influence on smoothing and hardening of steel 03Cr16Ni15Mo3Ti1 surface layer during dry diamond burnishing with spherical indenter. Metal Work. Mater. Sci. 24(1), 6–22 (2022). https://doi.org/10.17212/1994-6309-2022-24.1-6-22

    Article  Google Scholar 

  25. Raza, A., Kumar, S.: A critical review of tool design in burnishing process. Tribol. Int. 174, 107717 (2022). https://doi.org/10.1016/j.triboint.2022.107717

    Article  Google Scholar 

  26. Savrai, R.A., Makarov, A.V.: Effect of nanostructuring frictional treatment on the properties of high-carbon pearlitic steel—part II: mechanical properties. Mater. Sci. Eng. A 734, 513–518 (2018). https://doi.org/10.1016/j.msea.2018.07.099

    Article  CAS  Google Scholar 

  27. Makarov, A.V., Korshunov, L.G., Malygina, I.Yu., Solodova, I.L.: Raising the heat and wear resistances of hardened carbon steels by friction strengthening treatment. Met. Sci. Heat Treat. 49(3–4), 150–156 (2007). https://doi.org/10.1007/s11041-007-0028-3

    Article  CAS  ADS  Google Scholar 

  28. Makarov, A.V., Korshunov, L.G., Vykhodets, V.B., Kurennykh, T.E., Savrai, R.A.: Effect of strengthening friction treatment on the chemical composition, structure, and tribological properties of a high-carbon steel. Phys. Met. Metallogr. 110(5), 507–521 (2010). https://doi.org/10.1134/S0031918X10110116

    Article  ADS  Google Scholar 

  29. Makarov, A.V., Savrai, R.A., Gorkunov, E.S., Yurovskikh, A.S., Malygina, I.Yu., Davydova, N.A.: Structure, mechanical characteristics, and deformation and fracture features of quenched structural steel under static and cyclic loading after combined strain-heat nanostructuring treatment. Phys. Mesomech. 18(1), 43–57 (2015). https://doi.org/10.1134/S1029959915010063

    Article  Google Scholar 

  30. Makarov, A.V., Korshunov, L.G., Savrai, R.A., Davydova, N.A., Malygina, I.Yu., Chernenko, N.L.: Influence of prolonged heating on thermal softening, chemical composition, and evolution of the nanocrystalline structure formed in quenched high-carbon steel upon friction treatment. Phys. Met. Metallogr. 115(3), 303–314 (2014). https://doi.org/10.1134/S0031918X14030065

    Article  ADS  Google Scholar 

  31. Kragelsky, I.V., Dobychin, M.N., Kombalov, V.S.: Foundations of calculations for friction and wear. Mashinostroenie, Moscow (1987)

    Google Scholar 

  32. Kragelsky, I.V., Dobychin, M.N., Kombalov, V.S.: Friction and wear: calculation methods. Elsevier (1982)

    Google Scholar 

  33. Yang, Z.Y., Naylor, M.G.S., Rigney, D.A.: Sliding wear of 304 and 310 stainless steels. Wear 105, 73–86 (1985). https://doi.org/10.1016/0043-1648(85)90007-9

    Article  CAS  Google Scholar 

  34. Kerridge, M., Lancaster, J.K.: The stages in a process of severe metallic wear. Proc. R. Soc. London. Ser. A 236, 250–264 (1956). https://doi.org/10.1098/rspa.1956.0133

    Article  ADS  Google Scholar 

  35. Rigney, D.A.: Transfer, mixing and associated chemical and mechanical processes during the sliding of ductile materials. Wear 245, 1–9 (2000). https://doi.org/10.1016/S0043-1648(00)00460-9

    Article  CAS  Google Scholar 

  36. Pintaude, G., Tanaka, D.K., Sinatora, A.: The effects of abrasive particle size on the sliding friction coefficient of steel using a spiral pin-on-disk apparatus. Wear 255(1–6), 55–59 (2003). https://doi.org/10.1016/S0043-1648(03)00212-6

    Article  CAS  Google Scholar 

  37. Richardson, R.C.D.: The maximum hardness of strained surfaces and the abrasive wear of metals and alloys. Wear 10(5), 353–382 (1967). https://doi.org/10.1016/0043-1648(67)90276-1

    Article  Google Scholar 

  38. Richardson, R.C.D.: The wear of metals by relatively soft abrasives. Wear 11(4), 245–275 (1968). https://doi.org/10.1016/0043-1648(68)90175-0

    Article  Google Scholar 

  39. Johnson, K.L.: Contact mechanics. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  40. Klein, C.A.: Anisotropy of Young’s modulus and poisson’s ratio in diamond. Mater. Res. Bull. 27(12), 1407–1414 (1992). https://doi.org/10.1016/0025-5408(92)90005-K

    Article  CAS  Google Scholar 

  41. D’Evelyn, M.P., Zgonc, K.: Elastic properties of polycrystalline cubic boron nitride and diamond by dynamic resonance measurements. Diam. Relat. Mater. 6(5–7), 812–816 (1997). https://doi.org/10.1016/S0925-9635(96)00631-0

    Article  ADS  Google Scholar 

  42. Okamoto, S., Nakazono, Y., Otsuka, K., Shimoitani, Y., Takada, J.: Mechanical properties of WC/Co cemented carbide with larger WC grain size. Mater Charact 55(4–5), 281–287 (2005). https://doi.org/10.1016/j.matchar.2005.06.001

    Article  CAS  Google Scholar 

  43. Torbilo, V.M.: Diamond burnishing. Mashinostroenie, Moscow (1972)

    Google Scholar 

  44. Odincov, L.G.: Final treatment of parts by diamond burnishing and vibration burnishing. Mashinostroenie, Moscow (1981)

    Google Scholar 

  45. Pshibilskii, V.: Technology of surface plastic processing. Metallurgy, Moscow (1991)

    Google Scholar 

  46. Korshunov, L.G., Pushin, V.G., Chernenko, N.L., Makarov, V.V.: Structural transformations, strengthening, and wear resistance of titanium nickelide upon abrasive and adhesive wear. Phys. Met. Metallogr. 110(1), 91–101 (2010). https://doi.org/10.1134/S0031918X10070112

    Article  ADS  Google Scholar 

  47. Dautzenberg, J.H., Zaat, J.H.: Quantitative determination of deformation by sliding wear. Wear 23(1), 9–19 (1973). https://doi.org/10.1016/0043-1648(73)90036-7

    Article  Google Scholar 

  48. Heilmann, I., Clark, W.A., Rigney, D.A.: Orientation determination of subsurface cells generated by sliding. Acta Metall. 31(8), 1293–1305 (1983). https://doi.org/10.1016/0001-6160(83)90191-8

    Article  CAS  Google Scholar 

  49. Savrai, R.A., Kolobylin, Yu.M., Volkova, E.G.: Micromechanical characteristics of the surface layer of metastable austenitic steel after frictional treatment. Phys. Met. Metallogr. 122(8), 800–806 (2021). https://doi.org/10.1134/S0031918X21080123

    Article  CAS  ADS  Google Scholar 

  50. Putilova, E.A., Goruleva, L.S., Zadvorkin, S.M., Skorynina, P.A., Savrai, R.A., Krucheva, K.D.: Evolution of the structure and physical-mechanical properties of metastable steel after surface frictional treatment with varying loading on the indenter. Lett. Mater. 13(3), 191–196 (2023). https://doi.org/10.22226/2410-3535-2023-3-191-196

    Article  Google Scholar 

  51. Vinogradov, Yu.M. (ed.): Wear resistant materials in chemical engineering: Handbook. Mashinosroenie, Leningrad (1977)

    Google Scholar 

  52. Korhonen, H., Laakkonen, J., Hakala, J., Lappalainen, R.: Improvements in the surface characteristics of stainless steel workpieces by burnishing with an amorphous diamond-coated tip. Mach. Sci. Technol. 17(4), 593–610 (2013). https://doi.org/10.1080/10910344.2013.837351

    Article  CAS  Google Scholar 

  53. Smirnov, A.V., Kuznetsov, V.A.: Factors affecting the surface roughness in burnishing. Russ. Engin. Res. 38(10), 814–817 (2018). https://doi.org/10.3103/S1068798X18100155

    Article  Google Scholar 

  54. Papsheva, N., Akushskaya, O.: Increasing resistance of cutting tool with diamond burnishing. Proc. 5th Int. Conf. Ind. Eng. ICIE 2019 2, 901–909 (2019). https://doi.org/10.1007/978-3-030-22063-1

    Article  Google Scholar 

  55. Sachin, B., Narendranath, S., Chakradhar, D.: Selection of optimal process parameters in sustainable diamond burnishing of 17–4 PH stainless steel. J. Braz. Soc. Mech. Sci. Eng. 41, 219 (2019). https://doi.org/10.1007/s40430-019-1726-7

    Article  CAS  Google Scholar 

  56. Maximov, J.T., Duncheva, G.V., Anchev, A.P., Dunchev, V.P.: Slide burnishing versus deep rolling—a comparative analysis. Int. J. Adv. Manuf. Technol. 110, 1923–1939 (2020). https://doi.org/10.1007/s00170-020-05950-2

    Article  Google Scholar 

  57. Zielecki, W., Bucior, M., Trzepiecinski, T., Ochał, K.: Effect of slide burnishing of shoulder fillets on the fatigue strength of X19NiCrMo4 steel shafts. Int. J. Adv. Manuf. Technol. 106, 2583–2593 (2020). https://doi.org/10.1007/s00170-019-04815-7

    Article  Google Scholar 

  58. Sachin, B., Rao, C.M., Naik, G.M., Puneet, N.P.: Influence of slide burnishing process on the surface characteristics of precipitation hardenable steel. SN Appl. Sci. 3, 223 (2021). https://doi.org/10.1007/s42452-021-04260-w

    Article  CAS  Google Scholar 

  59. Palásti-Kovács, B., Sipos, S., Czifra, Á.: Interpretation of “Rz = 4×Ra” and other roughness parameters in the evaluation of machined surfaces. Proc. 13th Int. Conf. Tools (ICT-2012) 237–244 (2012)

  60. Mehl, A.C.S.B., Benegra, M., Pintaude, G.: Surface characterization of the seating platform of titanium implant processed with different textures. J. Braz. Soc. Mech. Sci. Eng. 43, 130 (2021). https://doi.org/10.1007/s40430-021-02853-5

    Article  CAS  Google Scholar 

Download references

Funding

This work was done within the state orders for the IES UB RAS and IMP UB RAS (No. 122021000033-2). Experimental studies were performed in Collective Use Center “Plastometriya” of the Institute of Engineering Science UB RAS. The authors are also grateful to A.L. Osintseva for the assistance in preparing the specimens.

Author information

Authors and Affiliations

Authors

Contributions

PAS: Investigation, experimentation, visualization and writing. AVM: Conceptualization, investigation and writing. RAS: Visualization, writing and supervision.

Corresponding author

Correspondence to Roman A. Savrai.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skorynina, P.A., Makarov, A.V. & Savrai, R.A. Substantiating the Process Parameters of Frictional Treatment with a Sliding Indenter for an Austenitic Chromium-Nickel Steel. Tribol Lett 72, 9 (2024). https://doi.org/10.1007/s11249-023-01816-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-023-01816-2

Keywords

Navigation