Skip to main content
Log in

An Incremental Contact Model for Hyperelastic Solids with Rough Surfaces

  • Research
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Hyperelastic materials like gels and rubbers have numerous applications in daily life and industrial production. However, most traditional contact models for rough solids do not include the hyperelastic deformation mechanism. This paper extends the linear-elastic incremental equivalent contact model to study the contact processes of hyperelastic rough solids. For any specific surface separation, the contact stiffness is determined by the total area and number of the contact patches, as well as the instantaneous tangent modulus. Analogous to buckle theory, we introduce the hyperelasticity of materials through employing the tangent modulus. By integrating the stiffness of contact spots, the normal contact force is then obtained. The load-area relation predicted by the present model exhibits consistency with finite element results even up to a contact area fraction of 90%. For hyperelastic solids with self-affine fractal rough surfaces, we investigate the effect of surface morphologies and material nonlinearity on contact behaviors. This research will be helpful for further studies on the lubrication, leakage, and wear of contact interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Creton, C., Ciccotti, M.: Fracture and adhesion of soft materials: a review. Rep. Prog. Phys. 79, 0466601 (2016). https://doi.org/10.1088/0034-4885/79/4/046601

    Article  CAS  Google Scholar 

  2. Dunn, A.C., Sawyer, W.G., Angelini, T.E.: Gemini interfaces in aqueous lubrication with hydrogels. Tribol. Lett. 54, 59–66 (2014). https://doi.org/10.1007/s11249-014-0308-1

    Article  CAS  Google Scholar 

  3. Tiwari, A., Dorogin, L., Bennett, A.I., Schulze, K.D., Sawyer, W.G., Tahir, M., Heinrich, G., Persson, B.N.J.: The effect of surface roughness and viscoelasticity on rubber adhesion. Soft Matter. 13, 3602–3621 (2017). https://doi.org/10.1039/c7sm00177k

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Liu, R., He, L., Cao, M., Sun, Z., Zhu, R., Li, Y.: Flexible temperature sensors. Front. Chem. 9, 539678 (2021). https://doi.org/10.3389/fchem.2021.539678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Froyen, A.A.F., Schenning, A.P.H.J.: A multifunctional structural coloured electronic skin monitoring body motion and temperature. Soft Matter. 19, 361–365 (2023). https://doi.org/10.1039/d2sm01503j

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Li, Xuebing, Wei, Yintao: Classic strain energy functions and constitutive tests of rubber-like materials. Rubber Chem. Technol. 88, 604–627 (2015)

    Article  CAS  Google Scholar 

  7. Greenwood, J.A., Williamson, J.B.: Contact of nominally flat surfaces. Proc. R. Soc. Lon. Series a Math. Phys. Eng. Sci. 295, 300–319 (1966). https://doi.org/10.1098/rspa.1966.0242

    Article  CAS  ADS  Google Scholar 

  8. Whitehouse, D.J., Archard, J.F.: Properties of random surfaces of significance in their contact. Proc. R. Soc. Lon. Series a Math. Phys. Eng. Sci. 316, 97–121 (1970). https://doi.org/10.1098/rspa.1970.0068

    Article  ADS  Google Scholar 

  9. Hisakado, T.: Effect of surface-roughness on contact between solid-surfaces. Wear 28, 217–234 (1974). https://doi.org/10.1016/0043-1648(74)90163-x

    Article  Google Scholar 

  10. Bush, A.W., Gibson, R.D., Thomas, T.R.: Elastic contact of a rough surface. Wear 35, 87–111 (1975). https://doi.org/10.1016/0043-1648(75)90145-3

    Article  Google Scholar 

  11. Bush, A.W., Gibson, R.D., Keogh, G.P.: Strongly anisotropic rough surfaces. J. Tribol. 101, 15 (1979)

    Google Scholar 

  12. Afferrante, L., Carbone, G., Demelio, G.: Interacting and coalescing hertzian asperities: a new multiasperity contact model. Wear 278, 28–33 (2012). https://doi.org/10.1016/j.wear.2011.12.013

    Article  CAS  Google Scholar 

  13. Afferrante, L., Bottiglione, F., Putignano, C., Persson, B.N.J., Carbone, G.: Elastic contact mechanics of randomly rough surfaces: an assessment of advanced asperity models and persson’s theory. Tribol. Lett. (2018). https://doi.org/10.1007/s11249-018-1026-x

    Article  Google Scholar 

  14. Violano, G., Afferrante, L.: On the contact between elasto-plastic media with self-affine fractal roughness. Int. J. Mech. Sci. 255, 108461 (2023). https://doi.org/10.1016/j.ijmecsci.2023.108461

    Article  Google Scholar 

  15. Mandelbrot, B.B.: The fractal geometry of nature. Fractal Geom. Nat. 51, 286–287 (1982)

    ADS  Google Scholar 

  16. Persson, B.N.J.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 115, 3840–3861 (2001). https://doi.org/10.1063/1.1388626

    Article  CAS  ADS  Google Scholar 

  17. Wang, G.F., Liang, X.M., Yan, D.: An incremental equivalent circular contact model for rough surfaces. J. Tribol. 143, 081503 (2021). https://doi.org/10.1115/1.4050602

    Article  Google Scholar 

  18. Liang, X.M., Ding, Y., Duo, Y., Yuan, W.K., Wang, G.F.: Elastic-perfectly plastic contact of rough surfaces: an incremental equivalent circular model. J. Tribol. 144, 1–19 (2022). https://doi.org/10.1115/1.4051979

    Article  Google Scholar 

  19. Liang, X.M., Jiang, C.Y., Wang, M.R., Dai, W.L., Wang, G.F.: Experimental study on the load-area relation of rough surfaces and comparison with theoretical model. Eur. J. Mech. A-Solids 99, 104934 (2023). https://doi.org/10.1016/j.euromechsol.2023.104934

    Article  ADS  Google Scholar 

  20. Zhang, M.G., Cao, Y.P., Li, G.Y., Feng, X.Q.: Spherical indentation method for determining the constitutive parameters of hyperelastic soft materials. Biomech. Model. Mechanobiol. 13, 1–11 (2014). https://doi.org/10.1007/s10237-013-0481-4

    Article  PubMed  Google Scholar 

  21. Zhang, M.G., Chen, J.J., Feng, X.Q., Cao, Y.P.: On the applicability of sneddon’s solution for interpreting the indentation of nonlinear elastic biopolymers. J. Appl. Mech. 81, 091011 (2014). https://doi.org/10.1115/1.4027973

    Article  ADS  Google Scholar 

  22. Zhang, Q., Yang, Q.S.: Effects of large deformation and material nonlinearity on spherical indentation of hyperelastic soft materials. Mech. Res. Commun. 84, 55–59 (2017). https://doi.org/10.1016/j.mechrescom.2017.06.003

    Article  ADS  Google Scholar 

  23. Guo, Y., Li, J.A., Zhu, B., Li, Y.H.: Nonlinear dynamical model of hyperelastic pipes conveying fluid with finite deformation: roles of hyperelasticity and nonlinearity. Nonlinear Dyn. (2023). https://doi.org/10.1007/s11071-023-08584-7

    Article  Google Scholar 

  24. Lengiewicz, J., de Souza, M., Lahmar, M.A., Courbon, C., Dalmas, D., Stupkiewicz, S., Scheibert, J.: Finite deformations govern the anisotropic shear-induced area reduction of soft elastic contacts. J. Mech. Phys. Solids 143, 104056 (2020). https://doi.org/10.1016/j.jmps.2020.104056

    Article  MathSciNet  Google Scholar 

  25. Shanley, F.R.: Inelastic column theory. J. Aeronaut. Sci. 14, 261–268 (1947). https://doi.org/10.2514/8.1346

    Article  Google Scholar 

  26. Hill, R.: A general theory of uniqueness and stability in elastic-plastic solids. J. Mech. Phys. Solids 6, 236–249 (1958). https://doi.org/10.1016/0022-5096(58)90029-2

    Article  ADS  Google Scholar 

  27. Hill, R.: Uniqueness criteria and extremum principles in self-adjoint problems of continuum mechanics. J. Mech. Phys. Solids 10, 185–194 (1962). https://doi.org/10.1016/0022-5096(62)90037-6

    Article  MathSciNet  ADS  Google Scholar 

  28. Hill, R.: Aspects of invariance in solid mechanics-sciencedirect. Adv. Appl. Mech. 18, 1–75 (1979)

    Article  Google Scholar 

  29. Zhang, J., Zhang, Z.X., Huang, C.P.: Tensor presentation of algorithmic tangent modulus for plastic-damage models. Appl. Mech Mech Eng 29–32, 1747–1752 (2010)

    Google Scholar 

  30. Jiang, C.Y., Yuan, W.K., Zheng, Y.B., Wang, G.F.: Contact of rough surfaces: an incremental model accounting for strain gradient plasticity. Lubricants 11, 140 (2023). https://doi.org/10.3390/lubricants11030140

    Article  Google Scholar 

  31. Abbott, E.J., Firestone, F.A.: Specifying surface quality-a method based on accurate measurement and comparison. J. Mech. Eng. 55, 569–572 (1933)

    Google Scholar 

  32. Zhai, C.P., Hanaor, D., Gan, Y.X.: Contact stiffness of multiscale surfaces by truncation analysis. Int. J. Mech. Sci. 131, 305–316 (2017). https://doi.org/10.1016/j.ijmecsci.2017.07.018

    Article  Google Scholar 

  33. Sneddon, I.N.: Boussinesq’s problem for a flat-ended cylinder. Math. Proc. Cambridge Philos. Soc. 42, 29–39 (1946)

    Article  MathSciNet  ADS  Google Scholar 

  34. Sang, J.B., Sun, L.F., Xing, S.F., Liu, B.H., Sun, Y.L.: Mechanical properties of polymer rubber materials based on a new constitutive model. Polym. Polym. Compos. 22, 693–698 (2014). https://doi.org/10.1177/096739111402200807

    Article  CAS  Google Scholar 

  35. Wang, S.H., Yuan, W.K., Liang, X.M., Wang, G.F.: A new analytical model for the flattening of gaussian rough surfaces. Eur. J. Mech. A-Solids (2022). https://doi.org/10.1016/j.euromechsol.2022.104578

    Article  MathSciNet  Google Scholar 

  36. Shisode, M., Hazrati, J., Mishra, T., De Rooij, M., van den Boogaard, T.: Evolution of real area of contact due to combined normal load and sub-surface straining in sheet metal. Friction 9, 840–855 (2021). https://doi.org/10.1007/s40544-020-0444-6

    Article  Google Scholar 

  37. Mergel, J.C., Sahli, R., Scheibert, J., Sauer, R.A.: Continuum contact models for coupled adhesion and friction. J. Adhes. 95, 1101–1133 (2019). https://doi.org/10.1080/00218464.2018.1479258

    Article  CAS  Google Scholar 

  38. Wadwalkar, S.S., Jackson, R.L., Kogut, L.: A study of the elastic-plastic deformation of heavily deformed spherical contacts. J. Eng. Tribol. 224, 1091–1102 (2010). https://doi.org/10.1243/13506501jet763

    Article  Google Scholar 

  39. Hyun, S., Pei, L., Molinari, J.F., Robbins, M.O.: Finite-element analysis of contact between elastic self-affine surfaces. Phys. Rev. E 70, 26117–26117 (2004). https://doi.org/10.1103/PhysRevE.70.026117

    Article  CAS  ADS  Google Scholar 

  40. Pei, L., Hyun, S., Molinari, J.F., Robbins, M.O.: Finite element modeling of elasto-plastic contact between rough surfaces. J. Mech. Phys. Solids 53, 2385–2409 (2005). https://doi.org/10.1016/j.jmps.2005.06.008

    Article  CAS  ADS  Google Scholar 

  41. Bouchaud, E.: Scaling properties of cracks. J. Condens. Matter Phys. 9, 4319–4344 (1997). https://doi.org/10.1088/0953-8984/9/21/002

    Article  CAS  ADS  Google Scholar 

  42. Krim, J., Palasantzas, G.: Experimental-observations of self-affine scaling and kinetic roughening at submicron lengthscales. Int. J. Mod. Phys. B 9, 599–632 (1995). https://doi.org/10.1142/s0217979295000239

    Article  CAS  ADS  Google Scholar 

  43. Meakin, P. Fractals.: scaling and growth far from equilibrium. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  44. Schmahling, J., Hamprecht, F.A.: Generalizing the abbott-firestone curve by two new surface descriptors. Wear 262, 1360–1371 (2007). https://doi.org/10.1016/j.wear.2007.01.025

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (Grant numbers 11525209).

Author information

Authors and Affiliations

Authors

Contributions

CJ and XL contributed to the study’s conception and design. FEM simulations and analysis were performed by CJ. The first draft of the manuscript was written by CJ and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xuanming Liang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Liang, X. An Incremental Contact Model for Hyperelastic Solids with Rough Surfaces. Tribol Lett 72, 1 (2024). https://doi.org/10.1007/s11249-023-01800-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-023-01800-w

Keywords

Navigation