Skip to main content
Log in

Experiments and Prediction of Hold Time-Dependent Static Friction of a Wet Granular Layer

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Frictional properties of sliding surfaces have practical importance in a variety of applications. Therefore, the present study investigates the ageing or holding time-dependent static friction of a wet granular layer using a slide-free-slide (SFS) friction test. It is observed that the static friction varies as a logarithm of hold time. Further, the Mohr–Coulombs’ law of friction is used to determine adhesive friction and normal stress-dependent friction. The scaling law analysis has shown that the exponent of adhesive friction is more prominent in magnitude than the corresponding coefficient of friction. A static friction model, based on the formation and rupture of capillary bridges, has also been proposed for predicting the peaks of static friction at different hold times. At the end, the power laws, which correlate the number of attached capillary bridges and adhesion constant with hold time, are proposed to justify the present results.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(a\) :

Adhesive stress (kPa)

\(a_{s}\) :

Static adhesive stress (kPa)

\(k\) :

Boltzmann constant (JK1)

\(K_{b}\) :

Stiffness (kPa-m1)

\(N_{s}\) :

No. of strong microcontacts

\(\hat{N}_{s}\) :

Nondimensional form of no. of strong microcontact

\(N_{w}\) :

No. of weak microcontacts

\(\hat{N}_{w}\) :

Nondimensional form of no. of weak microcontact

\(N_{0}\) :

Density of total microcontacts available for adhesion (m2)

\(r_{s}\) :

Ratio of stiffness

\(T\) :

Temperature (K)

\(t_{h}\) :

Hold time (s)

\(t\) :

Slide time (s)

\(u_{w}\) :

Adhesion constant of microcontacts formation during hold time

\(u_{s}\) :

Adhesion constant of for microcontacts formation during sliding

\(V_{c}\) :

Creep velocity (mms1)

\(V_{0}\) :

External shear velocity (mms1)

\(\hat{V}_{0}\) :

Dimensionless external shear velocity

\(V_{*}\) :

Reference velocity (mms1)

\(\lambda\) :

Activation length (m)

\(\mu\) :

Coefficient of friction

\(\mu_{s}\) :

Static coefficient of friction

\(\sigma_{n}\) :

Normal stress (kPa)

\(\sigma_{s}\) :

Static friction due to strong microcontacts (kPa)

\(\sigma_{w}\) :

Static friction due to weak microcontacts (kPa)

\(\sigma_{*}\) :

Reference frictional stress (kPa)

\(\tau\) :

Frictional stress (kPa)

\(\tau_{s}\) :

Static stress (kPa)

\(\tau_{sn}\) :

Normal load-dependent static stress (kPa)

\(\tau_{rs}\) :

Residual stress (kPa)

\(\tau_{t}\) :

Relaxation time (s)

\(\tau_{*}\) :

Reference stress (kPa)

References

  1. Marone, C.: Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci. 26(1), 643–696 (1998)

    Article  CAS  Google Scholar 

  2. Frye, K.M.: A laboratory study of the friction behavior of granular materials. Doctoral Diss. Massachusetts Inst. Technol. (2002). https://doi.org/10.1144/GSL.SP.2001.186.01.07

    Article  Google Scholar 

  3. Yan, Y., Van Der Pluijm, B.A., Peacor, D.R.: Deformation microfabrics of clay gouge, lewis thrust, Canada: a case for fault weakening from clay transformation. Geol. Soc. London Spec. Publ. (2001). https://doi.org/10.1144/GSL.SP.2001.186.01.07

    Article  Google Scholar 

  4. Soni, P.K., Singh, A.K., Sivakumar, N., Singh, T.N.: Shear rate-dependent frictional properties of a wet granular layer. Int. J. Geomech. (2022). https://doi.org/10.1061/(ASCE)GM.1943-5622.0002219

    Article  Google Scholar 

  5. Frye, K.M., Marone, C.: Effect of humidity on granular friction at room temperature. J. Geophys. Res. Solid Earth (2002). https://doi.org/10.1029/2001JB000654

    Article  Google Scholar 

  6. Muhuri, S.K., Dewers, T.A., Scott, T.E., Jr., Reches, Z.E.: Interseismic fault strengthening and earthquake-slip instability: friction or cohesion? Geology (2003). https://doi.org/10.1130/G19601.1

    Article  Google Scholar 

  7. Mitarai, N., Nori, F.: Wet granular materials. Adv. Phys. (2006). https://doi.org/10.1080/00018730600626065

    Article  Google Scholar 

  8. Li, Q., Tullis, T.E., Goldsby, D., Carpick, R.W.: Frictional ageing from interfacial bonding and the origins of rate and state friction. Nature (2011). https://doi.org/10.1038/nature10589

    Article  Google Scholar 

  9. Barel, I., Filippov, A.E., Urbakh, M.: Formation and rupture of capillary bridges in atomic scale friction. J. Chem. Phys. (2012). https://doi.org/10.1063/1.4762863

    Article  Google Scholar 

  10. Soni, P.K., Singh, A.K., Katiyar, J.K.: Shear rate dependent static friction between a wet granular layer and hard surface. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. (2023). https://doi.org/10.1177/13506501221147987

    Article  Google Scholar 

  11. Petrova, D., Sharma, D.K., Vacha, M., Bonn, D., Brouwer, A.M., Weber, B.: Ageing of polymer frictional interfaces: the role of quantity and quality of contact. ACS Appl. Mater. Interfaces (2020). https://doi.org/10.1021/acsami.9b19125

    Article  Google Scholar 

  12. Singh, A.K., Juvekar, V.A.: A modified model for static friction of a soft and hard solid interface (2021). arXiv preprint arXiv:2101.09685.

  13. Dieterich, J.H.: Time-dependent friction in rocks. J. Geophys. Res. (1972). https://doi.org/10.1029/JB077i020p03690

    Article  Google Scholar 

  14. Persson, B.N.: Sliding friction: physical principles and applications. Springer Science & Business Media, Berlin (2013)

    Google Scholar 

  15. Baumberger, T., Caroli, C., Ronsin, O.: Self-healing slip pulses and the friction of gelatin gels. Eur. Phys. J. E (2003). https://doi.org/10.1140/epje/i2003-10009-7

    Article  Google Scholar 

  16. Gupta, V., Singh, A.K.: Scaling laws of gelatin hydrogels for steady dynamic friction. Int. J. Mod. Phys. B (2016). https://doi.org/10.1142/S0217979216501988

    Article  Google Scholar 

  17. Tenthorey, E., Cox, S.F.: Cohesive strengthening of fault zones during the interseismic period: an experimental study. J. Geophys. Res.: Solid Earth (2006). https://doi.org/10.1029/2005JB004122

    Article  Google Scholar 

  18. Weiss, J., Pellissier, V., Marsan, D., Arnaud, L., Renard, F.: Cohesion versus friction in controlling the long-term strength of a self-healing experimental fault. J. Geophys. Res.: Solid Earth (2016). https://doi.org/10.1002/2016JB013110

    Article  Google Scholar 

  19. Sinha, N., Singh, A.K., Gupta, V., Katiyar, J.K.: Adhesive and normal stress-dependent dynamic friction of a gelatin hydrogel. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. (2021). https://doi.org/10.1177/13506501211044650

    Article  Google Scholar 

  20. Marone, C., Hobbs, B.E., Ord, A.: Coulomb constitutive laws for friction: contrasts in frictional behavior for distributed and localized shear. Pure Appl. Geophys. (1992). https://doi.org/10.1007/BF00876327

    Article  Google Scholar 

  21. Van den Ende, M.P.A., Niemeijer, A.R.: An investigation into the role of time-dependent cohesion in interseismic fault restrengthening. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-46241-5

    Article  Google Scholar 

  22. Sammis, C.G., Biegel, R.L.: Fractals, fault-gouge, and friction. Pure Appl. Geophys. (1989). https://doi.org/10.1007/BF00874490

    Article  Google Scholar 

  23. ISI (Indian Standards Institution). Methods of test for soils. IS 2720 part-16 (1979). New Delhi, India. https://ia903004.us.archive.org/5/items/gov.in.is.2720.16.1987/is.2720.16.1987.pdf

  24. Schallamach, A.: A theory of dynamic rubber friction. Wear (1963). https://doi.org/10.1016/0043-1648(63)90206-0

    Article  Google Scholar 

  25. Singh, A.K., Juvekar, V.A.: Steady dynamic friction at elastomer–hard solid interface: a model based on population balance of bonds. Soft Matter (2011). https://doi.org/10.1039/C1SM06173A

    Article  Google Scholar 

  26. Singh, A.K., Juvekar, V.A., Bellare, J.R.: A model for frictional stress relaxation at the interface between a soft and a hard solid. J. Mech. Phys. Solids (2021). https://doi.org/10.1016/j.jmps.2020.104191

    Article  Google Scholar 

  27. Liu, Y., Szlufarska, I.: Chemical origins of frictional aging. Phys. Rev. Lett. (2012). https://doi.org/10.1103/PhysRevLett.109.186102

    Article  Google Scholar 

  28. Ouyang, W., Urbakh, M.: Microscopic mechanisms of frictional aging. J. Mech. Phys. Solids (2022). https://doi.org/10.1016/j.jmps.2022.104944

    Article  Google Scholar 

  29. Chaudhury, M.K.: Rate-dependent fracture at adhesive interface. J. Phys. Chem. B (1999). https://doi.org/10.1021/jp9906482

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge “ITRS-2021,” 2nd Virtual International Tribology Research Symposium for the presentation of the paper (Abstract no.-ITRS177) based on this present study. We also thank Prof. Vinay A. Juvekar of IIT Bombay for the fruitful discussion of this manuscript.

Funding

No funding has been provided for this work.

Author information

Authors and Affiliations

Authors

Contributions

PKS have performed all the experimentation and numerical modelling under the guidance of AKS. Manuscript preparation, such as writing and figure preparation is also done by PKS. Result interpretation and grammatical correction done by AKS and JKK.

Corresponding author

Correspondence to Arun K. Singh.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest concerning the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

See Table

Table 1 presents the different governing equations related to the proposed static friction model with their physical significance

1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soni, P.K., Singh, A.K. & Katiyar, J.K. Experiments and Prediction of Hold Time-Dependent Static Friction of a Wet Granular Layer. Tribol Lett 71, 75 (2023). https://doi.org/10.1007/s11249-023-01747-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-023-01747-y

Keywords

Navigation