Skip to main content
Log in

Possible Origin of D- and G-band Features in Raman Spectra of Tribofilms

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In the Raman analysis of tribofilms produced from organic precursors, the D- and G-band features are often observed, which resemble the characteristic bands of diamond-like carbon (DLC), amorphous carbon (a-C), or graphitic materials. This study reports experimental evidence that the D- and G-bands features in the Raman spectra of tribofilms could be generated by photochemical degradation of triboproducts due to the focused irradiation of laser beam during the Raman analysis, indicating that they are not unique to the genuine structure of the tribofilm produced via friction. This finding suggests that other complementary and non-destructive characterization is required to determine whether DLC, a-C, or graphitic species are produced tribochemically by frictional shear.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors of this study have affirmed that the data which supports their findings can be found in the paper and its Supplementary Information files. Data sets generated during the current study are available from the corresponding author upon reasonable request.

References

  1. Fischer, T.: Tribochemistry. Annu. Rev. Mater. Sci. 18, 303–323 (1988)

    Article  Google Scholar 

  2. Hsu, S.M., Zhang, J., Yin, Z.: The nature and origin of tribochemistry. Tribol. Lett. 13, 131–139 (2002). https://doi.org/10.1023/A:1020112901674

    Article  CAS  Google Scholar 

  3. Chen, Y., Renner, P., Liang, H.: A review of current understanding in tribochemical reactions involving lubricant additives. Friction (2022). https://doi.org/10.1007/s40544-022-0637-2

    Article  Google Scholar 

  4. Carlton, H., Huitink, D., Liang, H.: Tribochemistry as an alternative synthesis pathway. Lubricants 8, 87 (2020)

    Article  Google Scholar 

  5. He, X., Ngo, D., Kim, S.H.: Mechanochemical Reactions of Adsorbates at Tribological Interfaces: Tribopolymerizations of Allyl Alcohol Coadsorbed with Water on Silicon Oxide. Langmuir 35, 15451–15458 (2019). https://doi.org/10.1021/acs.langmuir.9b01663

    Article  CAS  Google Scholar 

  6. Palacios, J.: Films formed by antiwear additives and their incidence in wear and scuffing. Wear 114, 41–49 (1987)

    Article  CAS  Google Scholar 

  7. Luiz, J.F., Spikes, H.: Tribofilm formation, friction and wear-reducing properties of some phosphorus-containing antiwear additives. Tribol. Lett. 68, 1–24 (2020)

    Article  Google Scholar 

  8. He, X., Pollock, A., Kim, S.H.: Effect of Gas environment on mechanochemical reaction: A model study with tribo-polymerization of α-pinene in inert, oxidative, and reductive gases. Tribol. Lett. (2019). https://doi.org/10.1007/s11249-019-1136-0

    Article  Google Scholar 

  9. He, X., Kim, S.H.: Mechanochemistry of physisorbed molecules at tribological interfaces: molecular structure dependence of tribochemical polymerization. Langmuir 33, 2717–2724 (2017)

    Article  CAS  Google Scholar 

  10. Fujita, H., Spikes, H.: The formation of zinc dithiophosphate antiwear films. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 218, 265–278 (2004)

    Article  CAS  Google Scholar 

  11. Herrera-Fierro, P., Shogrin, B.A., Jones Jr, W.R. (1996) Spectroscopic Analysis of Perfluoropolyether Lubricant Degradation During Boundary Lubrication. Tribology Conference. Place

  12. Cheng, U.C., Stair, P.C.: In situ study of multialkylated cyclopentane and perfluoropolyalkyl ether chemistry in concentrated contacts using ultraviolet Raman spectroscopy. Tribol. Letters 4, 163–170 (1998). https://doi.org/10.1023/A:1019147020100

    Article  Google Scholar 

  13. John, P., Cutler, J., Sanders, J.: Tribological behavior of a multialkylated cyclopentane oil under ultrahigh vacuum conditions. Tribol. Lett. 9, 167–173 (2001). https://doi.org/10.1023/A:1018808921623

    Article  Google Scholar 

  14. Liao, Y., Pourzal, R., Wimmer, M., Jacobs, J., Fischer, A., Marks, L.: Graphitic tribological layers in metal-on-metal hip replacements. Science 334, 1687–1690 (2011)

    Article  CAS  Google Scholar 

  15. de Figueiredo, M.R., Bergmann, C., Ganser, C., Teichert, C., Kukla, C., Mitterer, C.: Adhesion tendency of polymers to hard coatings. Int. Polym. Proc. 28, 415–420 (2013)

    Article  Google Scholar 

  16. Khaemba, D.N., Neville, A., Morina, A.: A methodology for Raman characterisation of MoDTC tribofilms and its application in investigating the influence of surface chemistry on friction performance of MoDTC lubricants. Tribol. Lett. 59, 1–17 (2015). https://doi.org/10.1007/s11249-015-0566-6

    Article  CAS  Google Scholar 

  17. Wimmer, M., Laurent, M., Mathew, M., Nagelli, C., Liao, Y., Marks, L., et al.: The effect of contact load on CoCrMo wear and the formation and retention of tribofilms. Wear 332, 643–649 (2015). https://doi.org/10.1016/j.wear.2015.02.013

    Article  CAS  Google Scholar 

  18. Erdemir, A., Ramirez, G., Eryilmaz, O.L., Narayanan, B., Liao, Y., Kamath, G., et al.: Carbon-based tribofilms from lubricating oils. Nature 536, 67–71 (2016). https://doi.org/10.1038/nature18948

    Article  CAS  Google Scholar 

  19. Johnson, B., Wu, H., Desanker, M., Pickens, D., Chung, Y.-W., Jane Wang, Q.: Direct formation of lubricious and wear-protective carbon films from phosphorus- and sulfur-free oil-soluble additives. Tribol. Letters (2017). https://doi.org/10.1007/s11249-017-0945-2

    Article  Google Scholar 

  20. Miyajima, M., Kitamura, K., Matsumoto, K.: Characterization of tribochemical reactions on steel surfaces. Nippon Steel Sumitomo Met Tech Rep 114, 101–107 (2017)

    Google Scholar 

  21. Argibay, N., Babuska, T., Curry, J., Dugger, M., Lu, P., Adams, D., et al.: In-situ tribochemical formation of self-lubricating diamond-like carbon films. Carbon 138, 61–68 (2018). https://doi.org/10.1016/j.carbon.2018.06.006

    Article  CAS  Google Scholar 

  22. Pham, S.T., Wan, S., Tieu, K.A., Ma, M., Zhu, H., Nguyen, H.H., et al.: Unusual competitive and synergistic effects of graphite nanoplates in engine oil on the tribofilm formation. Adv. Mater. Interfaces 6, 1901081 (2019). https://doi.org/10.1002/admi.201901081

    Article  CAS  Google Scholar 

  23. Wu, H., Khan, A.M., Johnson, B., Sasikumar, K., Chung, Y.W., Wang, Q.J.: Formation and nature of carbon-containing tribofilms. ACS Appl Mater Interfaces 11, 16139–16146 (2019). https://doi.org/10.1021/acsami.8b22496

    Article  CAS  Google Scholar 

  24. Khan, A.M., Wu, H., Ma, Q., Chung, Y.-W., Wang, Q.J.: Relating tribological performance and tribofilm formation to the adsorption strength of surface-active precursors. Tribol Letters (2019). https://doi.org/10.1007/s11249-019-1249-5

    Article  Google Scholar 

  25. Deng, Q., Gong, Y., Jing, P., Ma, D., Li, Y., Ye, T., et al.: Formation of a carbonaceous film on the surface of Cu in a bovine serum albumin solution. Surf. Coat. Technol. 358, 611–616 (2019). https://doi.org/10.1016/j.surfcoat.2018.11.095

    Article  CAS  Google Scholar 

  26. Ma, Q., Khan, A.M., Wang, Q.J.: Dependence of tribological performance and tribopolymerization on the surface binding strength of selected cycloalkane-carboxylic acid additives. Tribol. Lett. 68, 1–10 (2020). https://doi.org/10.1007/s11249-020-01329-2

    Article  CAS  Google Scholar 

  27. Ramirez, G., Eryilmaz, O.L., Fatti, G., Righi, M.C., Wen, J., Erdemir, A.: Tribochemical conversion of methane to graphene and other carbon nanostructures: implications for friction and wear. ACS Applied Nano Materials 3, 8060–8067 (2020). https://doi.org/10.1021/acsanm.0c01527

    Article  CAS  Google Scholar 

  28. Zhang, R., Chen, Q., Fan, X., He, Z., Xiong, L., Shen, M.: In situ friction-induced graphene originating from methanol at the sliding interface between the WC self-mated tribo-pair and its tribological performance. Langmuir 36, 3887–3893 (2020). https://doi.org/10.1021/acs.langmuir.9b03963

    Article  CAS  Google Scholar 

  29. Xu, X., Xu, Z., Sun, J., Tang, G., Su, F.: In situ synthesizing carbon-based film by tribo-induced catalytic degradation of poly-α-olefin oil for reducing friction and wear. Langmuir 36, 10555–10564 (2020). https://doi.org/10.1021/acs.langmuir.0c01896

    Article  CAS  Google Scholar 

  30. Huynh, K.K., Tieu, K.A., Pham, S.T.: Synergistic and competitive effects between zinc dialkyldithiophosphates and modern generation of additives in engine oil. Lubricants 9, 35 (2021). https://doi.org/10.3390/lubricants9040035

    Article  CAS  Google Scholar 

  31. Adachi, K.: Superlubricity of carbon nitride coatings in inert gas environments, pp. 189–214. Superlubricity, Elsevier Amsterdam (2021)

    Google Scholar 

  32. Kabel, J., Edwards, T.E.J., Hain, C., Kochetkova, T., Parkison, D., Michler, J., et al.: A novel fiber-fretting test for tribological characterization of the fiber/matrix interface. Compos. Part B: Eng. (2021). https://doi.org/10.1016/j.compositesb.2020.108535

    Article  Google Scholar 

  33. Shirani, A., Li, Y., Eryilmaz, O.L., Berman, D.: Tribocatalytically-activated formation of protective friction and wear reducing carbon coatings from alkane environment. Sci. Rep. 11, 1–9 (2021). https://doi.org/10.1038/s41598-021-00044-9

    Article  CAS  Google Scholar 

  34. Fu, X., Cao, L., Wan, Y., Li, R.: Superlubricity achieved with TiN coatings via the in situ formation of a carbon-based film at the sliding interfaces. Ceram. Int. 47, 33917–33921 (2021). https://doi.org/10.1016/j.ceramint.2021.08.229

    Article  CAS  Google Scholar 

  35. Kohlhauser, B., Vladu, C.I., Gachot, C., Mayrhofer, P.H., Ripoll, M.R.: Reactive in-situ formation and self-assembly of MoS2 nanoflakes in carbon tribofilms for low friction. Mater. Design 199, 109427 (2021). https://doi.org/10.1016/j.matdes.2020.109427

    Article  CAS  Google Scholar 

  36. Zhang, J., Campen, S., Wong, J., Spikes, H.: Oxidational wear in lubricated contacts–Or is it? Tribol Int. 165, 107287 (2022). https://doi.org/10.1016/j.triboint.2021.107287

    Article  CAS  Google Scholar 

  37. Li, Y.-S., Jang, S., Bhuiyan, F.H., Martini, A., Kim, S.H.: Molecular structure and environment dependence of shear-driven chemical reactions: Comparative study of tribopolymerization of methylcyclopentane, cyclohexane and cyclohexene on stainless steel. Tribol. Lett. (2023). https://doi.org/10.1007/s11249-023-01703-w

    Article  Google Scholar 

  38. Khan, A.M., Ahmed, J., Liu, S., Martin, T., Berkebile, S., Chung, Y.-W., et al.: Formation of wear-protective tribofilms on different steel surfaces during lubricated sliding. Tribol Lett. (2022). https://doi.org/10.21203/rs.3.rs-2645494/v1

    Article  Google Scholar 

  39. Orlando, A., Franceschini, F., Muscas, C., Pidkova, S., Bartoli, M., Rovere, M., et al.: A comprehensive review on Raman spectroscopy applications. Chemosensors 9, 262 (2021)

    Article  CAS  Google Scholar 

  40. Smith, E., Dent, G.: Modern Raman Spectroscopy A Practical Approach. John Wiley & Sons, West Sussex, England (2005)

    Google Scholar 

  41. Ferrari, A., Robertson, J., Benedek, G., Milani, P., Ralchenko, V.: Nanostructured carbon for advanced applications. J Nano Car Adv Appl 24, 177 (2001). https://doi.org/10.1007/978-94-010-0858-7

    Article  CAS  Google Scholar 

  42. Ferrari, A.C., Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095 (2000). https://doi.org/10.1103/PhysRevB.61.14095

    Article  CAS  Google Scholar 

  43. Erdemir, A., Eryilmaz, O., Nilufer, I., Fenske, G.: Synthesis of superlow-friction carbon films from highly hydrogenated methane plasmas. Surf. Coat. Technol. 133, 448–454 (2000). https://doi.org/10.1016/S0257-8972(00)00968-3

    Article  Google Scholar 

  44. Erdemir, A., Donnet, C.: Tribology of diamond-like carbon films: recent progress and future prospects. J. Phys. D Appl. Phys. 39, R311 (2006)

    Article  CAS  Google Scholar 

  45. Jeng, Y.R., Islam, S., Wu, K.T., Erdemir, A., Eryilmaz, O.: Investigation of nano-mechanical and- tribological properties of hydrogenated diamond like carbon (DLC) coatings. J. Mech. 33, 769–776 (2016). https://doi.org/10.1017/jmech.2016.106

    Article  CAS  Google Scholar 

  46. Jang, S., Chen, Z., Kim, S.H.: Environmental effects on superlubricity of hydrogenated diamond-like carbon: Understanding tribochemical kinetics in O2 and H2O environments. Appl. Surf. Sci. (2022). https://doi.org/10.1016/j.apsusc.2021.152299

    Article  Google Scholar 

  47. Li, H., Xu, T., Wang, C., Chen, J., Zhou, H., Liu, H.: Friction behaviors of hydrogenated diamond-like carbon film in different environment sliding against steel ball. Appl. Surf. Sci. 249, 257–265 (2005). https://doi.org/10.1016/j.apsusc.2004.12.002

    Article  CAS  Google Scholar 

  48. Manimunda, P., Al-Azizi, A., Kim, S.H., Chromik, R.R.: Shear-induced structural changes and origin of ultralow friction of hydrogenated diamond-like carbon (DLC) in dry environment. ACS Appl. Mater. Interfaces 9, 16704–16714 (2017). https://doi.org/10.1021/acsami.7b03360

    Article  CAS  Google Scholar 

  49. Donnet, C., Erdemir, A.: Tribology of diamond-like carbon films: Fundamentals and applications. Springer, Berlin (2007)

    Google Scholar 

  50. Johnson, J.A., Woodford, J.B., Rajput, D., Kolesnikov, A.I., Schleuter, J.A., Eryilmaz, O.L., et al.: Carbon-hydrogen bonding in near-frictionless carbon. Appl. Phys. Lett. 93, 131911 (2008). https://doi.org/10.1063/1.2990757

    Article  CAS  Google Scholar 

  51. Lajaunie, L., Pardanaud, C., Martin, C., Puech, P., Hu, C., Biggs, M., et al.: Advanced spectroscopic analyses on a: CH materials: Revisiting the EELS characterization and its coupling with multi-wavelength Raman spectroscopy. Carbon 112, 149–161 (2017)

    Article  CAS  Google Scholar 

  52. Guizani, C., Haddad, K., Limousy, L., Jeguirim, M.: New insights on the structural evolution of biomass char upon pyrolysis as revealed by the Raman spectroscopy and elemental analysis. Carbon 119, 519–521 (2017)

    Article  CAS  Google Scholar 

  53. Ko, T.H., Kuo, W.S., Chang, Y.H.: Raman study of the microstructure changes of phenolic resin during pyrolysis. Polym. Compos. 21, 745–750 (2000)

    Article  CAS  Google Scholar 

  54. Schuepfer, D.B., Badaczewski, F., Guerra-Castro, J.M., Hofmann, D.M., Heiliger, C., Smarsly, B., et al.: Assessing the structural properties of graphitic and non-graphitic carbons by Raman spectroscopy. Carbon 161, 359–372 (2020)

    Article  CAS  Google Scholar 

  55. Zahra, H., Sawada, D., Kumagai, S., Ogawa, Y., Johansson, L.-S., Ge, Y., et al.: Evolution of carbon nanostructure during pyrolysis of homogeneous chitosan-cellulose composite fibers. Carbon 185, 27–38 (2021)

    Article  CAS  Google Scholar 

  56. He, X., Barthel, A.J., Kim, S.H.: Tribochemical synthesis of nano-lubricant films from adsorbed molecules at sliding solid interface: Tribo-polymers from α-pinene, pinane, and n-decane. Surf. Sci. 648, 352–359 (2016). https://doi.org/10.1016/j.susc.2016.01.005

    Article  CAS  Google Scholar 

  57. Barthel, A.J., Combs, D.R., Kim, S.H.: Synthesis of polymeric lubricating films directly at the sliding interface via mechanochemical reactions of allyl alcohols adsorbed from the vapor phase. RSC Adv 4, 26081–26086 (2014). https://doi.org/10.1039/c4ra02283a

    Article  CAS  Google Scholar 

  58. Bhuiyan, F.H., Li, Y.-S., Kim, S.H., Martini, A.: Shear-activated chemisorption and association of cyclic organic molecules. Faraday Discuss. (2023). https://doi.org/10.1039/d2fd00086

    Article  Google Scholar 

  59. Ashby, M., Abulawi, J., Kong, H.: Temperature maps for frictional heating in dry sliding. Tribol. Trans. 34, 577–587 (1991). https://doi.org/10.1080/10402009108982074

    Article  Google Scholar 

  60. Van Duuren, B.: The fluorescence spectra of aromatic hydrocarbons and heterocyclic aromatic compounds. Anal. Chem. 32, 1436–1442 (1960)

    Article  Google Scholar 

  61. Bejaoui, S., Mercier, X., Desgroux, P., Therssen, E.: Laser induced fluorescence spectroscopy of aromatic species produced in atmospheric sooting flames using UV and visible excitation wavelengths. Combust. Flame 161, 2479–2491 (2014)

    Article  CAS  Google Scholar 

  62. Li, G.Y., Han, K.L.: The sensing mechanism studies of the fluorescent probes with electronically excited state calculations. Wiley Interdisciplinary Reviews: Computational Molecular Science 8, e1351 (2018). https://doi.org/10.1002/wcms.1351

    Article  CAS  Google Scholar 

  63. Surplice, N., D’Arcy, R.: Reduction in the work function of stainless steel by electric fields. J. Phys. F: Met. Phys. 2, L8 (1972)

    Article  CAS  Google Scholar 

  64. Chua, Y.T., Stair, P.C.: A novel fluidized bed technique for measuring UV Raman spectra of catalysts and adsorbates. J. Catal. 196, 66–72 (2000). https://doi.org/10.1006/jcat.2000.3017

    Article  CAS  Google Scholar 

  65. Agarwal, U.P.: 1064 nm FT-Raman spectroscopy for investigations of plant cell walls and other biomass materials. Front. Plant Sci. 5, 490 (2014). https://doi.org/10.3389/fpls.2014.00490

    Article  Google Scholar 

  66. Ferrari, A.C., Robertson, J.: Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 64, 075414 (2001). https://doi.org/10.1103/PhysRevB.64.075414

    Article  CAS  Google Scholar 

  67. Lamberton, R., Morley, S., Maguire, P., McLaughlin, J.: Monitoring laser-induced microstructural changes of thin film hydrogenated amorphous carbon (aC: H) using Raman spectroscopy. Thin Solid Films 333, 114–125 (1998). https://doi.org/10.1016/S0040-6090(98)00848-7

    Article  CAS  Google Scholar 

  68. Nistor, L.C., Van Landuyt, J., Ralchenko, V., Kononenko, T., Obraztsova, E.D., Strelnitsky, V.: Direct observation of laser-induced crystallization of aC: H films. Appl. Phys. A 58, 137–144 (1994). https://doi.org/10.1007/BF00332170

    Article  Google Scholar 

  69. Casiraghi, C., Ferrari, A., Robertson, J.: Raman spectroscopy of hydrogenated amorphous carbons. Phys. Rev. B 72, 085401 (2005). https://doi.org/10.1103/PhysRevB.72.085401

    Article  CAS  Google Scholar 

  70. Stephenson, D.A.: Raman cross sections of selected hydrocarbons and freons. J. Quant. Spectrosc. Radiat. Transfer 14, 1291–1301 (1974). https://doi.org/10.1016/0022-4073(74)90098-3

    Article  CAS  Google Scholar 

  71. Ayscough, P., Eden, C., Steiner, H.: Polymerization of ethylene over supported chromium oxide catalysts. J. Catal. 4, 278–290 (1965)

    Article  CAS  Google Scholar 

  72. Hogan, J.: Ethylene polymerization catalysis over chromium oxide. J. Polym. Sci. A-1 Polym. Chem. (1970). https://doi.org/10.1002/pol.1970.150080929

    Article  Google Scholar 

  73. Li, T., Zhou, C., Jiang, M.: UV absorption spectra of polystyrene. Polym. Bull. 25, 211–216 (1991)

    Article  CAS  Google Scholar 

  74. Jaleh, B., Madad, M.S., Tabrizi, M.F., Habibi, S., Golbedaghi, R., Keymanesh, M.: UV-degradation effect on optical and surface properties of polystyrene-TiO2 nanocomposite film. J. Iran. Chem. Soc. 8, S161–S168 (2011)

    Article  Google Scholar 

  75. Schinke, R.: Photodissociation dynamics: spectroscopy and fragmentation of small polyatomic molecules. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  76. Dahlenborg, H., Millqvist-Fureby, A., Brandner, B.D., Bergenstahl, B.: Study of the porous structure of white chocolate by confocal Raman microscopy. Eur. J. Lipid Sci. Technol. 114, 919–926 (2012). https://doi.org/10.1002/ejlt.201200006

    Article  CAS  Google Scholar 

  77. Cuevas, R., Cheryan, M.: Thermal conductivity of liquid foods—A review. J. Food Process Eng 2, 283–306 (1978)

    Article  Google Scholar 

  78. Mattea, M., Urbicain, M., Rotstein, E.: Prediction of thermal conductivity of vegetable foods by the effective medium theory. J. Food Sci. 51, 113–115 (1986)

    Article  Google Scholar 

  79. Carlslaw, H., Jaeger, J.: Conduction of heat in solids. Oxford University Press, Oxford (1959)

    Google Scholar 

  80. Radoykova, T.H., Radeva, G.V., Nenkova, S.K.: Comparative kinetic analysis of poplar biomass alkaline hydrolysis. Cellul. Chem. Technol. 50, 269–274 (2016)

    CAS  Google Scholar 

  81. Donaldson, L.: Autofluorescence in plants. Molecules 25, 2393 (2020)

    Article  CAS  Google Scholar 

  82. Zhang, J., Zhang, W.: Preparation and characterization of activated carbon fibers from liquefied poplar bark. Mater. Lett. 112, 26–28 (2013)

    Article  CAS  Google Scholar 

  83. Momodu, D., Madito, M., Barzegar, F., Bello, A., Khaleed, A., Olaniyan, O., et al.: Activated carbon derived from tree bark biomass with promising material properties for supercapacitors. J. Solid State Electrochem. 21, 859–872 (2017)

    Article  CAS  Google Scholar 

  84. Ali, A.M., Deckert-Gaudig, T., Egiza, M., Deckert, V., Yoshitake, T.: Near-and far-field Raman spectroscopic studies of nanodiamond composite films deposited by coaxial arc plasma. Appl. Phys. Lett. (2020). https://doi.org/10.1063/15142198

    Article  Google Scholar 

  85. Ye, X., Zhou, H., Levchenko, I., Bazaka, K., Xu, S., Xiao, S.: Low-Temperature synthesis of graphene by icp-assisted amorphous carbon sputtering. ChemistrySelect 3, 8779–8785 (2018)

    Article  CAS  Google Scholar 

  86. Hoque, M.K., Behan, J.A., Stamatin, S.N., Zen, F., Perova, T.S., Colavita, P.E.: Capacitive storage at nitrogen doped amorphous carbon electrodes: structural and chemical effects of nitrogen incorporation. RSC Adv. 9, 4063–4071 (2019)

    Article  CAS  Google Scholar 

  87. Marchon, B., Gui, J., Grannen, K., Rauch, G.C., Ager, J.W., Silva, S., et al.: Photoluminescence and Raman spectroscopy in hydrogenated carbon films. IEEE Trans. Magn. 33, 3148–3150 (1997). https://doi.org/10.1109/20.617873

    Article  CAS  Google Scholar 

  88. Matousek, P., Towrie, M., Parker, A.: Fluorescence background suppression in Raman spectroscopy using combined Kerr gated and shifted excitation Raman difference techniques. J. Raman Spectrosc. 33, 238–242 (2002). https://doi.org/10.1002/jrs.840

    Article  CAS  Google Scholar 

  89. Casiraghi, C., Piazza, F., Ferrari, A.C., Grambole, D., Robertson, J.: Bonding in hydrogenated diamond-like carbon by Raman spectroscopy. Diam. Relat. Mater. 14, 1098–1102 (2005). https://doi.org/10.1016/j.diamond.2004.10.030

    Article  CAS  Google Scholar 

  90. Ferrari, A.C., Robertson, J.: Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond. Philos. Trans. R. Soc. London, Ser. A 362, 2477–2512 (2004). https://doi.org/10.1098/rsta.2004.1452

    Article  CAS  Google Scholar 

  91. Merlen, A., Buijnsters, J., Pardanaud, C.: A guide to and review of the use of multiwavelength raman spectroscopy for characterizing defective aromatic carbon solids: from graphene to amorphous carbons. Coatings (2017). https://doi.org/10.3390/coatings7100153

    Article  Google Scholar 

  92. Gammage, M.D., Stauffer, S., Henkelman, G., Becker, M.F., Keto, J.W., Kovar, D.: Ethylene binding to Au/Cu alloy nanoparticles. Surf. Sci. 653, 66–70 (2016). https://doi.org/10.1016/j.susc.2016.05.008

    Article  CAS  Google Scholar 

  93. Lin-Vien, D., Colthup, N.B., Fateley, W.G., Grasselli, J.G.: The handbook of infrared and Raman characteristic frequencies of organic molecules. Elsevier, Amsterdam (1991)

    Google Scholar 

  94. Moskovits, M., Dilellla, D.P.: Enhanced Raman spectra of ethylene and propylene adsorbed on silver. Chem. Phys. Lett. 73, 500–505 (1980). https://doi.org/10.1016/0009-2614(80)80704-4

    Article  CAS  Google Scholar 

  95. Brolly, C., Parnell, J., Bowden, S.: Raman spectroscopy: Caution when interpreting organic carbon from oxidising environments. Planet. Space Sci. 121, 53–59 (2016). https://doi.org/10.1016/j.pss.2015.12.008

    Article  CAS  Google Scholar 

  96. Velazco, A., Béché, A., Jannis, D., Verbeeck, J.: Reducing electron beam damage through alternative STEM scanning strategies. Part I Exp. Find. Ultramicrosc. 232, 113398 (2022). https://doi.org/10.1016/j.ultramic.2021.113398

    Article  CAS  Google Scholar 

  97. Garman, E.F., Weik, M.: X-ray radiation damage to biological samples: recent progress. J. Synchrotron Radiat. 26, 907–911 (2019). https://doi.org/10.1107/S0909049509004361

    Article  CAS  Google Scholar 

  98. Leijten, Z.J., Keizer, A.D., de With, G., Friedrich, H.: Quantitative analysis of electron beam damage in organic thin films. J. Phys. Chem. C 121, 10552–10561 (2017). https://doi.org/10.1021/acs.jpcc.7b01749

    Article  CAS  Google Scholar 

  99. Worobiec, A., Darchuk, L., Brooker, A., Potgieter, H., Van Grieken, R.: Damage and molecular changes under a laser beam in SEM-EDX/MRS interface: a case study on iron-rich particles. J. Raman Spectrosc. 42, 808–814 (2011). https://doi.org/10.1002/jrs.2789

    Article  CAS  Google Scholar 

  100. Holton, J.M.: A beginner’s guide to radiation damage. J. Synchrotron Radiat. 16, 133–142 (2009). https://doi.org/10.1107/S0909049509004361

    Article  CAS  Google Scholar 

  101. Lei, Y., Zhang, L., Zhou, L., Yu, J., Zhao, G., Guo, L., et al.: Proton irradiation-induced changes in the tribological performance of polyimide composites. Tribol. Int. 167, 107427 (2022). https://doi.org/10.1016/j.triboint.2021.107427

    Article  CAS  Google Scholar 

  102. Juretzka, B., Wieber, S., Wilkens, R., Hagemann, M., Kolb, R., Riedel, R.: Tribological behavior of film forming organosilane/-siloxane oil additives: film characterization and influences on lubrication. Tribol. Lett. 68, 5 (2020). https://doi.org/10.1007/s11249-019-1241-0

    Article  CAS  Google Scholar 

  103. Minfray, C., Martin, J., De Barros, M., Mogne, T.L., Kersting, R., Hagenhoff, B.: Chemistry of ZDDP tribofilm by ToF-SIMS. Tribol. Lett. 17, 351–357 (2004)

    Article  CAS  Google Scholar 

  104. Minfray, C., Martin, J., Esnouf, C., Le Mogne, T., Kersting, R., Hagenhoff, B.: A multi-technique approach of tribofilm characterisation. Thin Solid Films 447, 272–277 (2004). https://doi.org/10.1016/S0040-6090(03)01064-2

    Article  CAS  Google Scholar 

  105. Costa, H., Evangelista, K., Cousseau, T., Acero, J., Kessler, F.: Use of XANES and XPS to investigate the effects of ethanol contamination on anti-wear ZDDP tribofilms. Tribol. Int. 159, 106997 (2021). https://doi.org/10.1016/j.triboint.2021.106997

    Article  CAS  Google Scholar 

  106. Ma, H., Li, J., Chen, H., Zuo, G., Yu, Y., Ren, T., et al.: XPS and XANES characteristics of tribofilms and thermal films generated by two P-and/or S-containing additives in water-based lubricant. Tribol. Int. 42, 940–945 (2009). https://doi.org/10.1016/j.triboint.2009.01.004

    Article  CAS  Google Scholar 

  107. Heuberger, R., Rossi, A., Spencer, N.D.: XPS study of the influence of temperature on ZnDTP tribofilm composition. Tribol. Lett. 25, 185–196 (2007). https://doi.org/10.1007/s11249-006-9166-9

    Article  CAS  Google Scholar 

  108. De Barros, M.-I., Bouchet, J., Raoult, I., Le Mogne, T., Martin, J.-M., Kasrai, M., et al.: Friction reduction by metal sulfides in boundary lubrication studied by XPS and XANES analyses. Wear 254, 863–870 (2003). https://doi.org/10.1016/S0043-1648(03)00237-0

    Article  CAS  Google Scholar 

  109. Marino, M.J., Hsiao, E., Chen, Y., Eryilmaz, O.L., Erdemir, A., Kim, S.H.: Understanding run-in behavior of diamond-like carbon friction and preventing diamond-like carbon wear in humid air. Langmuir 27, 12702–12708 (2011). https://doi.org/10.1021/la202927v

    Article  CAS  Google Scholar 

  110. Tóth, A., Bertóti, I., Székely, T., Mohai, M.: XPS study of ion-induced changes on the surface of an organosilicon model polymer. Surf. Interface Anal. 7, 282–288 (1985). https://doi.org/10.1002/sia.740070606

    Article  Google Scholar 

  111. Boesenberg, U., Ryan, C.G., Kirkham, R., Jahn, A., Madsen, A., Moorhead, G., et al.: Fast XANES fluorescence imaging using a Maia detector. J. Synchrotron Radiat. 25, 892–898 (2018). https://doi.org/10.1107/S1600577518004940

    Article  CAS  Google Scholar 

  112. Holton, J.M.: XANES measurements of the rate of radiation damage to selenomethionine side chains. J. Synchrotron Radiat. 14, 51–72 (2007). https://doi.org/10.1107/S0909049506048898

    Article  CAS  Google Scholar 

  113. Azman, N.F., Samion, S.: Dispersion stability and lubrication mechanism of nanolubricants: a review. Int. J. Precis. Eng. Manuf. Green Technol. 6, 393–414 (2019). https://doi.org/10.1007/s40684-019-00080-x

    Article  Google Scholar 

  114. Kuijper, M., van Hoften, G., Janssen, B., Geurink, R., De Carlo, S., Vos, M., et al.: FEI’s direct electron detector developments: Embarking on a revolution in cryo-TEM. J. Struct. Biol. 192, 179–187 (2015). https://doi.org/10.1016/j.jsb.2015.09.014

    Article  Google Scholar 

  115. Martini, A., Kim, S.H..: Activation volume in shear-driven chemical reactions. Tribol. Lett. 69(4) (2021). https://doi.org/10.1007/s11249-021-01522-x

Download references

Acknowledgements

This work was supported by the National Science Foundation: Penn Stat work was through Grant No. CMMI-1912199, CMMI-2038494, and DMR-2011410, the UC Merced work was through CMMI-2038499, and the Northwestern work was through CMMI-1662606. Also, the Northwestern work was partially supported by Army Research Laboratory Vehicle Technology Directorate (VTD) under Cooperative Agreement Number W911NF-20-2-0292. The authors appreciated the comments made by reviewers to clarify the main message of this paper for the tribology and tribochemistry community.

Funding

National Science Foundation, CMMI-2038494, CMMI-1912199, CMMI-1662606, DMR-2011410, Army Research Laboratory Vehicle Technology Directorate (VTD), W911NF-20-2-0292

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design, and to the writing. Material preparation, data collection, and analysis were performed by Yu-Sheng Li, Seokhoon Jang, Arman Khan, Tobias Martin, and Andrew L. Ogrinc. Seong H. Kim, Ashlie Martini, Yip-Wah Chung, and Q. Jane Wang supervised the study and provided critical feedback, and helped to revise the manuscript. All authors read and approved the final manuscript

Corresponding authors

Correspondence to Yip-Wah Chung or Seong H. Kim.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 262 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YS., Jang, S., Khan, A. et al. Possible Origin of D- and G-band Features in Raman Spectra of Tribofilms. Tribol Lett 71, 57 (2023). https://doi.org/10.1007/s11249-023-01728-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-023-01728-1

Keywords

Navigation