Skip to main content
Log in

Review of Molecular Dynamics Simulations of Phosphonium Ionic Liquid Lubricants

  • Review
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Phosphonium ionic liquids (ILs) have various uses, including as environmentally benign lubricants and lubricant additives. The properties and behavior of these ILs depend on their chemical composition, i.e., cation and anion combination, and the operating conditions. One approach to understanding the relationships between composition, conditions, and lubricant-relevant properties is classical molecular dynamics simulation. Although this research area is still emerging, it is growing rapidly, so a review of the topic is timely. Here, we review force field-based molecular dynamics simulations of phosphonium ILs, with emphasis on physical, chemical, and thermal properties relevant to lubricants. Properties reported in previous studies are density, viscosity, self-diffusivity, ionic conductivity, heat capacity, and thermal stability, as well as interactions with other compounds, including \(\mathrm {H_2O}\) and \(\mathrm {CO_2}\), and solid surfaces. The effects of anion and cation, as well as conditions such as temperature, on these properties are identified and analyzed in terms of anion-cation structure, orientation, and interactions. Finally, trends are summarized and opportunities for future research are identified.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Joshi, M.D., Anderson, J.L.: Recent advances of ionic liquids in separation science and mass spectrometry. RSC Adv. 2(13), 5470–5484 (2012)

    Article  CAS  Google Scholar 

  2. Singh, S.K., Savoy, A.W.: Ionic liquids synthesis and applications: an overview. J. Mol. Liq. 297, 112038 (2020)

    Article  CAS  Google Scholar 

  3. Rahman, M.H., Khajeh, A., Panwar, P., Patel, M., Martini, A., Menezes, P.L.: Recent progress on phosphonium-based room temperature ionic liquids: synthesis, properties, tribological performances and applications. Tribol. Int. 167, 107331 (2022)

    Article  CAS  Google Scholar 

  4. Liu, X., Zhou, F., Liang, Y., Liu, W.: Tribological performance of phosphonium based ionic liquids for an aluminum-on-steel system and opinions on lubrication mechanism. Wear 261(10), 1174–1179 (2006)

    Article  CAS  Google Scholar 

  5. Weng, L., Liu, X., Liang, Y., Xue, Q.: Effect of tetraalkylphosphonium based ionic liquids as lubricants on the tribological performance of a steel-on-steel system. Tribol. Lett. 26(1), 11–17 (2007)

    Article  CAS  Google Scholar 

  6. Minami, I., Kita, M., Kubo, T., Nanao, H., Mori, S.: The tribological properties of ionic liquids composed of trifluorotris (pentafluoroethyl) phosphate as a hydrophobic anion. Tribol. Lett. 30(3), 215–223 (2008)

    Article  CAS  Google Scholar 

  7. Minami, I., Inada, T., Sasaki, R., Nanao, H.: Tribo-chemistry of phosphonium-derived ionic liquids. Tribol. Lett. 40(2), 225–235 (2010)

    Article  CAS  Google Scholar 

  8. Scarbath-Evers, L.K., Hunt, P.A., Kirchner, B., MacFarlane, D.R., Zahn, S.: Molecular features contributing to the lower viscosity of phosphonium ionic liquids compared to their ammonium analogues. Phys. Chem. Chem. Phys. 17(31), 20205–20216 (2015)

    Article  CAS  Google Scholar 

  9. Naik, P.K., Paul, S., Banerjee, T.: Physiochemical properties and molecular dynamics simulations of phosphonium and ammonium based deep eutectic solvents. J. Solut. Chem. 48(7), 1046–1065 (2019)

    Article  CAS  Google Scholar 

  10. Otero, I., Loépez, E.R., Reichelt, M., Villanueva, M., Salgado, J., Fernaéndez, J.: Ionic liquids based on phosphonium cations as neat lubricants or lubricant additives for a steel/steel contact. ACS Appl. Mater. Interfaces 6(15), 13115–13128 (2014)

    Article  CAS  Google Scholar 

  11. Fraser, K.J., MacFarlane, D.R.: Phosphonium-based ionic liquids: an overview. Aust. J. Chem. 62(4), 309–321 (2009)

    Article  CAS  Google Scholar 

  12. Maton, C., De Vos, N., Stevens, C.V.: Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem. Soc. Rev. 42(13), 5963–5977 (2013)

    Article  CAS  Google Scholar 

  13. Khazalpour, S., Yarie, M., Kianpour, E., Amani, A., Asadabadi, S., Seyf, J.Y., Rezaeivala, M., Azizian, S., Zolfigol, M.A.: Applications of phosphonium-based ionic liquids in chemical processes. J. Iran. Chem. Soc. 17(8), 1775–1917 (2020)

    Article  CAS  Google Scholar 

  14. Yu, B., Bansal, D.G., Qu, J., Sun, X., Luo, H., Dai, S., Blau, P.J., Bunting, B.G., Mordukhovich, G., Smolenski, D.J.: Oil-miscible and non-corrosive phosphonium-based ionic liquids as candidate lubricant additives. Wear 289, 58–64 (2012)

    Article  CAS  Google Scholar 

  15. Cai, M., Yu, Q., Liu, W., Zhou, F.: Ionic liquid lubricants: when chemistry meets tribology. Chem. Soc. Rev. 49, 7753–7818 (2020)

    Article  CAS  Google Scholar 

  16. Henriques, R.R., Soares, B.G.: Sepiolite modified with phosphonium ionic liquids as anticorrosive pigment for epoxy coatings. Appl. Clay Sci. 200, 105890 (2021)

    Article  CAS  Google Scholar 

  17. Shah, F.U., Glavatskih, S., MacFarlane, D.R., Somers, A., Forsyth, M., Antzutkin, O.N.: Novel halogen-free chelated orthoborate-phosphonium ionic liquids: synthesis and tribophysical properties. Phys. Chem. Chem. Phys. 13(28), 12865–12873 (2011)

    Article  CAS  Google Scholar 

  18. Totolin, V., Minami, I., Gabler, C., Dörr, N.: Halogen-free borate ionic liquids as novel lubricants for tribological applications. Tribol. Int. 67, 191–198 (2013)

    Article  CAS  Google Scholar 

  19. Zhu, L., Dong, J., Ma, Y., Jia, Y., Peng, C., Li, W., Zhang, M., Gong, K., Wang, X.: Synthesis and investigation of halogen-free phosphonium-based ionic liquids for lubrication applications. Tribol. Trans. 62(6), 943–954 (2019)

    Article  CAS  Google Scholar 

  20. Sydow, M., Owsianiak, M., Framski, G., Woźniak-Karczewska, M., Piotrowska-Cyplik, A., Ławniczak, Ł, Szulc, A., Zgoła-Grześkowiak, A., Heipieper, H.J., Chrzanowski, Ł: Biodiversity of soil bacteria exposed to sub-lethal concentrations of phosphonium-based ionic liquids: effects of toxicity and biodegradation. Ecotoxicol. Environ. Saf. 147, 157–164 (2018)

    Article  CAS  Google Scholar 

  21. Oulego, P., Blanco, D., Ramos, D., Viesca, J., Díaz, M., Battez, A.H.: Environmental properties of phosphonium, imidazolium and ammonium cation-based ionic liquids as potential lubricant additives. J. Mol. Liq. 272, 937–947 (2018)

    Article  CAS  Google Scholar 

  22. Rohlmann, P., Munavirov, B., Furó, I., Antzutkin, O., Rutland, M.W., Glavatskih, S.: Non-halogenated ionic liquid dramatically enhances tribological performance of biodegradable oils. Front. Chem. 7, 98 (2019)

    Article  CAS  Google Scholar 

  23. Zhou, Y., Qu, J.: Ionic liquids as lubricant additives: a review. ACS Appl. Mater. Interfaces 9(4), 3209–3222 (2017)

    Article  CAS  Google Scholar 

  24. Kasar, A.K., Reeves, C.J., Menezes, P.L.: The effect of particulate additive mixtures on the tribological performance of phosphonium-based ionic liquid lubricants. Tribol. Int. 165, 107300 (2022)

    Article  CAS  Google Scholar 

  25. Sivapragasam, M., Jaganathan, J.R., Levêque, J.-M., Moniruzzaman, M., Mutalib, M.A.: Microbial biocompatibility of phosphonium-and ammonium-based ionic liquids. J. Mol. Liq. 273, 107–115 (2019)

    Article  CAS  Google Scholar 

  26. Reeves, C.J., Siddaiah, A., Menezes, P.L.: Tribological study of imidazolium and phosphonium ionic liquid-based lubricants as additives in carboxylic acid-based natural oil: advancements in environmentally friendly lubricants. J. Clean. Prod. 176, 241–250 (2018)

    Article  CAS  Google Scholar 

  27. Yang, J., Zhou, Z., Liang, Y., Tang, J., Gao, Y., Niu, J., Dong, H., Tang, R., Tang, G., Cao, Y.: Sustainable preparation of microcapsules with desirable stability and bioactivity using phosphonium ionic liquid as a functional additive. ACS Sustain. Chem. Eng. 8(35), 13440–13448 (2020)

    Article  CAS  Google Scholar 

  28. Nazir, S.., Khawar Rauf, M., Ebihara, M., Hameed, S..: [4-(methoxycarbonyl) benzyl] triphenylphosphonium bromide hemihydrate. Acta Crystallogr. Sect. E: Struct. Rep. Online 64(2), 423 (2008)

    Article  CAS  Google Scholar 

  29. Dove, M.T.: An introduction to atomistic simulation methods. Seminarios de la SEM 4, 7–37 (2008)

    Google Scholar 

  30. Balluffi, R.W., Allen, S.M., Carter, W.C.: Kinetics of Materials. Wiley, New York (2005)

    Book  Google Scholar 

  31. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, Oxford (2017)

    Book  Google Scholar 

  32. Yan, T., Burnham, C.J., Del Pópolo, M.G., Voth, G.A.: Molecular dynamics simulation of ionic liquids: the effect of electronic polarizability. J. Phys. Chem. B 108(32), 11877–11881 (2004)

    Article  CAS  Google Scholar 

  33. Borodin, O.: Polarizable force field development and molecular dynamics simulations of ionic liquids. J. Phys. Chem. B 113(33), 11463–11478 (2009)

    Article  CAS  Google Scholar 

  34. Starovoytov, O.N., Torabifard, H., Cisneros, G.A.: Development of amoeba force field for 1, 3-dimethylimidazolium based ionic liquids. J. Phys. Chem. B 118(25), 7156–7166 (2014)

    Article  CAS  Google Scholar 

  35. Wang, Y.-L., Shah, F.U., Glavatskih, S., Antzutkin, O.N., Laaksonen, A.: Atomistic insight into orthoborate-based ionic liquids: force field development and evaluation. J. Phys. Chem. B 118(29), 8711–8723 (2014)

    Article  CAS  Google Scholar 

  36. Bedrov, D., Piquemal, J.-P., Borodin, O., MacKerell, A.D., Jr., Roux, B., Shroder, C.: Molecular dynamics simulations of ionic liquids and electrolytes using polarizable force fields. Chem. Rev. 119(13), 7940–7995 (2019)

    Article  CAS  Google Scholar 

  37. Goloviznina, K., Canongia Lopes, J.N., Costa Gomes, M., Pádua, A.A.: Transferable, polarizable force field for ionic liquids. J. Chem. Theory Comput. 15(11), 5858–5871 (2019)

    Article  CAS  Google Scholar 

  38. Vázquez-Montelongo, E.A., Vázquez-Cervantes, J.E., Cisneros, G.A.: Current status of amoeba-il: a multipolar/polarizable force field for ionic liquids. Int. J. Mol. Sci. 21(3), 697 (2020)

    Article  CAS  Google Scholar 

  39. Canongia Lopes, J.N., Deschamps, J., Pádua, A.A.: Modeling ionic liquids using a systematic all-atom force field. J. Phys. Chem. B 108(6), 2038–2047 (2004)

    Article  CAS  Google Scholar 

  40. Canongia Lopes, J.N., Pádua, A.A.: Molecular force field for ionic liquids composed of triflate or bistriflylimide anions. J. Phys. Chem. B 108(43), 16893–16898 (2004)

    Article  CAS  Google Scholar 

  41. Canongia Lopes, J.N., Pádua, A.A.: Molecular force field for ionic liquids iii: imidazolium, pyridinium, and phosphonium cations; chloride, bromide, and dicyanamide anions. J. Phys. Chem. B 110(39), 19586–19592 (2006)

    Article  CAS  Google Scholar 

  42. Canongia Lopes, J.N., Pádua, A.A., Shimizu, K.: Molecular force field for ionic liquids iv: trialkylimidazolium and alkoxycarbonyl-imidazolium cations; alkylsulfonate and alkylsulfate anions. J. Phys. Chem. B 112(16), 5039–5046 (2008)

    Article  CAS  Google Scholar 

  43. Shimizu, K., Almantariotis, D., Gomes, M.F.C., Padua, A.A., Canongia Lopes, J.N.: Molecular force field for ionic liquids v: hydroxyethylimidazolium, dimethoxy-2-methylimidazolium, and fluoroalkylimidazolium cations and bis (fluorosulfonyl) amide, perfluoroalkanesulfonylamide, and fluoroalkylfluorophosphate anions. J. Phys. Chem. B 114(10), 3592–3600 (2010)

    Article  CAS  Google Scholar 

  44. Lopes, J.N.C., Pádua, A.A.: CL&P: a generic and systematic force field for ionic liquids modeling. Theor. Chem. Acc. 131(3), 1–11 (2012)

    Google Scholar 

  45. Xia, M., Chai, Z., Wang, D.: Polarizable and non-polarizable force field representations of ferric cation and validations. J. Phys. Chem. B 121(23), 5718–5729 (2017)

    Article  CAS  Google Scholar 

  46. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117(19), 5179–5197 (1995)

    Article  CAS  Google Scholar 

  47. Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J.: Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118(45), 11225–11236 (1996)

    Article  CAS  Google Scholar 

  48. Liu, Z., Huang, S., Wang, W.: A refined force field for molecular simulation of imidazolium-based ionic liquids. J. Phys. Chem. B 108(34), 12978–12989 (2004)

    Article  CAS  Google Scholar 

  49. Wu, X., Liu, Z., Huang, S., Wang, W.: Molecular dynamics simulation of room-temperature ionic liquid mixture of [bmim][BF4] and acetonitrile by a refined force field. Phys. Chem. Chem. Phys. 7(14), 2771–2779 (2005)

    Article  CAS  Google Scholar 

  50. Zhou, G., Liu, X., Zhang, S., Yu, G., He, H.: A force field for molecular simulation of tetrabutylphosphonium amino acid ionic liquids. J. Phys. Chem. B 111(25), 7078–7084 (2007)

    Article  CAS  Google Scholar 

  51. Wu, H., Shah, J.K., Tenney, C.M., Rosch, T.W., Maginn, E.J.: Structure and dynamics of neat and CO2-reacted ionic liquid tetrabutylphosphonium 2-cyanopyrrolide. Ind. Eng. Chem. Res. 50(15), 8983–8993 (2011)

    Article  CAS  Google Scholar 

  52. Parker, Q., Bell, R.G., de Leeuw, N.H.: Structural and dynamical properties of ionic liquids: a molecular dynamics study employing DL_POLY 4. Mol. Simul., 1–9 (2019)

  53. Sheridan, Q.R., Schneider, W.F., Maginn, E.J.: Role of molecular modeling in the development of CO2-reactive ionic liquids. Chem. Rev. 118(10), 5242–5260 (2018)

    Article  CAS  Google Scholar 

  54. Sambasivarao, S.V., Acevedo, O.: Development of OPLS-AA force field parameters for 68 unique ionic liquids. J. Chem. Theory Comput. 5(4), 1038–1050 (2009)

    Article  CAS  Google Scholar 

  55. Doherty, B., Zhong, X., Gathiaka, S., Li, B., Acevedo, O.: Revisiting opls force field parameters for ionic liquid simulations. J. Chem. Theory Comput. 13(12), 6131–6145 (2017)

    Article  CAS  Google Scholar 

  56. Dommert, F., Holm, C.: Refining classical force fields for ionic liquids: theory and application to [MMIM][Cl]. Phys. Chem. Chem. Phys. 15(6), 2037–2049 (2013)

    Article  CAS  Google Scholar 

  57. Voroshylova, I.V., Chaban, V.V.: Atomistic force field for pyridinium-based ionic liquids: reliable transport properties. J. Phys. Chem. B 118(36), 10716–10724 (2014)

    Article  CAS  Google Scholar 

  58. Chaban, V.V., Voroshylova, I.V.: Systematic refinement of Canongia Lopes-Pádua force field for pyrrolidinium-based ionic liquids. J. Phys. Chem. B 119(20), 6242–6249 (2015)

    Article  CAS  Google Scholar 

  59. Köddermann, T., Paschek, D., Ludwig, R.: Molecular dynamic simulations of ionic liquids: a reliable description of structure, thermodynamics and dynamics. Chem. Phys. Chem. 8(17), 2464–2470 (2007)

    Article  CAS  Google Scholar 

  60. Vergadou, N., Androulaki, E., Hill, J.-R., Economou, I.G.: Molecular simulations of imidazolium-based tricyanomethanide ionic liquids using an optimized classical force field. Phys. Chem. Chem. Phys. 18(9), 6850–6860 (2016)

    Article  CAS  Google Scholar 

  61. Liu, X., Zhou, G., Zhang, S., Yu, G.: Molecular simulations of phosphonium-based ionic liquid. Mol. Simul. 36(1), 79–86 (2010)

    Article  CAS  Google Scholar 

  62. Liu, X., Zhao, Y., Zhang, X., Zhou, G., Zhang, S.: Microstructures and interaction analyses of phosphonium-based ionic liquids: a simulation study. J. Phys. Chem. B 116(16), 4934–4942 (2012)

    Article  CAS  Google Scholar 

  63. Wang, Y.-L., Sarman, S., Kloo, L., Antzutkin, O.N., Glavatskih, S., Laaksonen, A.: Solvation structures of water in trihexyltetradecylphosphonium-orthoborate ionic liquids. J. Chem. Phys. 145(6), 064507 (2016)

    Article  CAS  Google Scholar 

  64. Sarman, S., Wang, Y.-L., Rohlmann, P., Glavatskih, S., Laaksonen, A.: Rheology of phosphonium ionic liquids: a molecular dynamics and experimental study. Phys. Chem. Chem. Phys. 20(15), 10193–10203 (2018)

    Article  CAS  Google Scholar 

  65. Pereira, G.F.L., Pereira, R.G., Salanne, M., Siqueira, L.J.A.: Molecular dynamics simulations of ether-modified phosphonium ionic liquid confined in between planar and porous graphene electrode models. J. Phys. Chem. C 123(17), 10816–10825 (2019)

    Article  CAS  Google Scholar 

  66. Van Duin, A.C., Dasgupta, S., Lorant, F., Goddard, W.A.: Reaxff: a reactive force field for hydrocarbons. J. Phys. Chem. A 105(41), 9396–9409 (2001)

    Article  CAS  Google Scholar 

  67. Zhang, B., van Duin, A.C., Johnson, J.K.: Development of a ReaxFF reactive force field for tetrabutylphosphonium glycinate/CO2 mixtures. J. Phys. Chem. B 118(41), 12008–12016 (2014)

    Article  CAS  Google Scholar 

  68. Tsuzuki, S., Tokuda, H., Hayamizu, K., Watanabe, M.: Magnitude and directionality of interaction in ion pairs of ionic liquids: relationship with ionic conductivity. J. Phys. Chem. B 109(34), 16474–16481 (2005)

    Article  CAS  Google Scholar 

  69. Maschio, L., Civalleri, B., Ugliengo, P., Gavezzotti, A.: Intermolecular interaction energies in molecular crystals: comparison and agreement of localized møller-plesset 2, dispersion-corrected density functional, and classical empirical two-body calculations. J. Phys. Chem. A 115(41), 11179–11186 (2011)

    Article  CAS  Google Scholar 

  70. Gontrani, L., Russina, O., Lo Celso, F., Caminiti, R., Annat, G., Triolo, A.: Liquid structure of trihexyltetradecylphosphonium chloride at ambient temperature: an x-ray scattering and simulation study. J. Phys. Chem. B 113(27), 9235–9240 (2009)

    Article  CAS  Google Scholar 

  71. Martins, V.L., Sanchez-Ramirez, N., Ribeiro, M.C., Torresi, R.M.: Two phosphonium ionic liquids with high Li+ transport number. Phys. Chem. Chem. Phys. 17(35), 23041–23051 (2015)

    Article  CAS  Google Scholar 

  72. Shaikh, A.R., Ashraf, M., AlMayef, T., Chawla, M., Poater, A., Cavallo, L.: Amino acid ionic liquids as potential candidates for CO2 capture: combined density functional theory and molecular dynamics simulations. Chem. Phys. Lett. 745, 137239 (2020)

    Article  CAS  Google Scholar 

  73. Zhao, Y., Tian, L., Pei, Y., Wang, H., Wang, J.: Effect of anionic structure on the LCST phase behavior of phosphonium ionic liquids in water. Ind. Eng. Chem. Res. 57(38), 12935–12941 (2018)

    Article  CAS  Google Scholar 

  74. Zhang, X., Huo, F., Liu, X., Dong, K., He, H., Yao, X., Zhang, S.: Influence of microstructure and interaction on viscosity of ionic liquids. Ind. Eng. Chem. Res. 54(13), 3505–3514 (2015)

    Article  CAS  Google Scholar 

  75. Laaksonen, A., Kusalik, P., Svishchev, I.: Three-dimensional structure in water-methanol mixtures. J. Phys. Chem. A 101(33), 5910–5918 (1997)

    Article  CAS  Google Scholar 

  76. Kulińska, K., Kuliński, T., Lyubartsev, A., Laaksonen, A., Adamiak, R.W.: Spatial distribution functions as a tool in the analysis of ribonucleic acids hydration-molecular dynamics studies. Comput. Chem. 24(3–4), 451–457 (2000)

    Article  Google Scholar 

  77. Kusalik, P.G., Svishchev, I.M.: The spatial structure in liquid water. Science 265(5176), 1219–1221 (1994)

    Article  CAS  Google Scholar 

  78. Gillespie, R.J., Popelier, P.L.A.: Chemical Bonding and Molecular Geometry. Oxford University Press, Oxford (2001)

    Google Scholar 

  79. Stachowicz-Kuśnierz, A., Korchowiec, B., Korchowiec, J.: Charge distributions for molecular dynamics simulations from self-consistent polarization method. J Comput Chem. 41, 259–2597 (2020). https://doi.org/10.1002/jcc.26414

    Article  CAS  Google Scholar 

  80. Koski, J.P., Moore, S.G., Clay, R.C., O’Hearn, K.A., Aktulga, H.M., Wilson, M.A., Rackers, J.A., Lane, J.M.D., Modine, N.A.: Water in an external electric field: comparing charge distribution methods using ReaxFF simulations. J. Chem. Theory Comput. 18(1), 580–594 (2022). https://doi.org/10.1021/acs.jctc.1c00975

    Article  CAS  Google Scholar 

  81. Dong, K., Zhang, S.: Hydrogen bonds: a structural insight into ionic liquids. Chem. Eur. J. 18(10), 2748–2761 (2012)

    Article  CAS  Google Scholar 

  82. Luo, J., Conrad, O., Vankelecom, I.F.: Physicochemical properties of phosphonium-based and ammonium-based protic ionic liquids. J. Mater. Chem. 22(38), 20574–20579 (2012)

    Article  CAS  Google Scholar 

  83. Guardia, E., Martí, J., García-Tarrés, L., Laria, D.: A molecular dynamics simulation study of hydrogen bonding in aqueous ionic solutions. J. Mol. Liq. 117(1–3), 63–67 (2005)

    Article  CAS  Google Scholar 

  84. Fitch, E.C.: Proactive Maintenance for Mechanical Systems, vol. 5. Elsevier, Stillwater (2013)

    Google Scholar 

  85. Quercia, G., Belisario, R., Rengifo, R.: Reduction of erosion rate by particle size distribution (PSD) modification of hematite as weighting agent for oil based drilling fluids. Wear 266(11–12), 1229–1236 (2009)

    Article  CAS  Google Scholar 

  86. Gao, X., Fang, J., Wang, H.: Sampling the isothermal-isobaric ensemble by Langevin dynamics. J. Chem. Phys. 144(12), 124113 (2016)

    Article  CAS  Google Scholar 

  87. Wu, H., Maginn, E.J.: Water solubility and dynamics of CO2 capture ionic liquids having aprotic heterocyclic anions. Fluid Phase Equilib. 368, 72–79 (2014)

    Article  CAS  Google Scholar 

  88. Wang, Y.L., Shimpi, M.R., Sarman, S., Antzutkin, O.N., Glavatskih, S., Kloo, L., Laaksonen, A.: Atomistic insight into tetraalkylphosphonium bis (oxalato) borate ionic liquid/water mixtures. 2. Volumetric and dynamic properties. J. Phys. Chem. B 120(30), 7446–7455 (2016)

    Article  CAS  Google Scholar 

  89. Venkatesan, S.S., Huda, M.M., Rai, N.: Molecular insights into ionic liquid/aqueous interface of phosphonium based phase-separable ionic liquids. AIP Adv. 9(4), 045115 (2019)

    Article  CAS  Google Scholar 

  90. Sharma, S., Gupta, A., Dhabal, D., Kashyap, H.K.: Pressure-dependent morphology of trihexyl (tetradecyl) phosphonium ionic liquids: A molecular dynamics study. J. Chem. Phys. 145(13), 134506 (2016)

    Article  CAS  Google Scholar 

  91. Mondal, A., Sunda, A.P.: Molecular dynamics simulations of ammonium/phosphonium-based protic ionic liquids: influence of alkyl to aryl group. Phys. Chem. Chem. Phys. 20(28), 19268–19275 (2018)

    Article  CAS  Google Scholar 

  92. Shimpi, M.R., Rohlmann, P., Shah, F.U., Glavatskih, S., Antzutkin, O.N.: Transition anionic complex in trihexyl (tetradecyl) phosphonium-bis (oxalato) borate ionic liquid-revisited. Phys. Chem. Chem. Phys. 23(10), 6190–6203 (2021)

    Article  CAS  Google Scholar 

  93. Kasahara, S., Kamio, E., Matsuyama, H.: Improvements in the CO2 permeation selectivities of amino acid ionic liquid-based facilitated transport membranes by controlling their gas absorption properties. J. Membr. Sci. 454, 155–162 (2014)

    Article  CAS  Google Scholar 

  94. Blahušiak, M., Schlosser, Š: Physical properties of phosphonium ionic liquid and its mixtures with dodecane and water. J. Chem. Thermodyn. 72, 54–64 (2014)

    Article  CAS  Google Scholar 

  95. Marták, J., Schlosser, S.: Density, viscosity, and structure of equilibrium solvent phases in butyric acid extraction by phosphonium ionic liquid. J. Chem. Eng. Data 62(10), 3025–3035 (2017)

    Article  CAS  Google Scholar 

  96. Oster, K., Goodrich, P., Jacquemin, J., Hardacre, C., Ribeiro, A., Elsinawi, A.: A new insight into pure and water-saturated quaternary phosphonium-based carboxylate ionic liquids: density, heat capacity, ionic conductivity, thermogravimetric analysis, thermal conductivity and viscosity. J. Chem. Thermodyn. 121, 97–111 (2018)

    Article  CAS  Google Scholar 

  97. Seo, S., DeSilva, M.A., Xia, H., Brennecke, J.F.: Effect of cation on physical properties and CO2 solubility for phosphonium-based ionic liquids with 2-cyanopyrrolide anions. J. Phys. Chem. B 119(35), 11807–11814 (2015)

    Article  CAS  Google Scholar 

  98. Kolbeck, C., Lehmann, J., Lovelock, K., Cremer, T., Paape, N., Wasserscheid, P., Froba, A., Maier, F., Steinruck, H.-P.: Density and surface tension of ionic liquids. J. Phys. Chem. B 114(51), 17025–17036 (2010)

    Article  CAS  Google Scholar 

  99. Tariq, M., Forte, P., Gomes, M.C., Lopes, J.C., Rebelo, L.: Densities and refractive indices of imidazolium-and phosphonium-based ionic liquids: effect of temperature, alkyl chain length, and anion. J. Chem. Thermodyn. 41(6), 790–798 (2009)

    Article  CAS  Google Scholar 

  100. Seki, S., Kobayashi, T., Kobayashi, Y., Takei, K., Miyashiro, H., Hayamizu, K., Tsuzuki, S., Mitsugi, T., Umebayashi, Y.: Effects of cation and anion on physical properties of room-temperature ionic liquids. J. Mol. Liq. 152(1–3), 9–13 (2010)

    Article  CAS  Google Scholar 

  101. Montalbán, M., Bolívar, C., Diaz Banos, F.G., Víllora, G.: Effect of temperature, anion, and alkyl chain length on the density and refractive index of 1-alkyl-3-methylimidazolium-based ionic liquids. J. Chem. Eng. Data 60(7), 1986–1996 (2015)

    Article  CAS  Google Scholar 

  102. Ebrahimi, M., Moosavi, F.: The effects of temperature, alkyl chain length, and anion type on thermophysical properties of the imidazolium based amino acid ionic liquids. J. Mol. Liq. 250, 121–130 (2018)

    Article  CAS  Google Scholar 

  103. Hess, B.: Determining the shear viscosity of model liquids from molecular dynamics simulations. J. Chem. Phys. 116(1), 209–217 (2002)

    Article  CAS  Google Scholar 

  104. Ramasamy, U.S., Len, M., Martini, A.: Correlating molecular structure to the behavior of linear styrene-butadiene viscosity modifiers. Tribol. Lett. 65(4), 1–8 (2017)

    Article  CAS  Google Scholar 

  105. Len, M., Ramasamy, U.S., Lichter, S., Martini, A.: Thickening mechanisms of polyisobutylene in polyalphaolefin. Tribol. Lett. 66(1), 1–9 (2018)

    Article  CAS  Google Scholar 

  106. Panwar, P., Michael, P., Devlin, M., Martini, A.: Critical shear rate of polymer-enhanced hydraulic fluids. Lubricants 8(12), 102 (2020)

    Article  Google Scholar 

  107. Mathas, D., Holweger, W., Wolf, M., Bohnert, C., Bakolas, V., Procelewska, J., Wang, L., Bair, S., Skylaris, C.-K.: Evaluation of methods for viscosity simulations of lubricants at different temperatures and pressures: a case study on PAO-2. Tribol. Trans. (just-accepted), 1–26 (2022)

  108. Noda, A., Hayamizu, K., Watanabe, M.: Pulsed-gradient spin-echo 1H and 19F NMR ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate room-temperature ionic liquids. J. Phys. Chem. B 105(20), 4603–4610 (2001)

    Article  CAS  Google Scholar 

  109. Ghatee, M.H., Bahrami, M.: Emergence of innovative properties by replacement of nitrogen atom with phosphorus atom in quaternary ammonium ionic liquids: Insights from ab initio calculations and MD simulations. Chem. Phys. 490, 92–105 (2017)

    Article  CAS  Google Scholar 

  110. J Evans, D., P Morriss, G.: Statistical Mechanics of Nonequilbrium Liquids. ANU Press, Canberra (2007)

    Google Scholar 

  111. Li, A., Tian, Z., Yan, T., Jiang, D.-E., Dai, S.: Anion-functionalized task-specific ionic liquids: molecular origin of change in viscosity upon CO2 capture. J. Phys. Chem. B 118(51), 14880–14887 (2014)

    Article  CAS  Google Scholar 

  112. Firaha, D.S., Gibalova, A.V., Holloczki, O.: Basic phosphonium ionic liquids as wittig reagents. ACS omega 2(6), 2901–2911 (2017)

    Article  CAS  Google Scholar 

  113. Barnhill, W.C., Qu, J., Luo, H., Meyer, H.M., III., Ma, C., Chi, M., Papke, B.L.: Phosphonium-organophosphate ionic liquids as lubricant additives: effects of cation structure on physicochemical and tribological characteristics. ACS Appl. Mater. Interfaces 6(24), 22585–22593 (2014)

    Article  CAS  Google Scholar 

  114. Rauber, D., Zhang, P., Huch, V., Kraus, T., Hempelmann, R.: Lamellar structures in fluorinated phosphonium ionic liquids: the roles of fluorination and chain length. Phys. Chem. Chem. Phys. 19(40), 27251–27258 (2017)

    Article  CAS  Google Scholar 

  115. Yamaguchi, T.: Shear thinning and nonlinear structural deformation of ionic liquids with long alkyl chains studied by molecular dynamics simulation. J. Phys. Chem. B 123(29), 6260–6265 (2019)

    Article  CAS  Google Scholar 

  116. Ma, Y., Liu, Y., Su, H., Wang, L., Zhang, J.: Relationship between hydrogen bond and viscosity for a series of pyridinium ionic liquids: molecular dynamics and quantum chemistry. J. Mol. Liq. 255, 176–184 (2018)

    Article  CAS  Google Scholar 

  117. Santos, E., Albo, J., Daniel, C., Portugal, C., Crespo, J., Irabien, A.: Permeability modulation of supported magnetic ionic liquid membranes (SMILMs) by an external magnetic field. J. Membr. Sci. 430, 56–61 (2013)

    Article  CAS  Google Scholar 

  118. Lourenço, T.C., Zhang, Y., Costa, L.T., Maginn, E.J.: A molecular dynamics study of lithium-containing aprotic heterocyclic ionic liquid electrolytes. J. Chem. Phys. 148(19), 193834 (2018)

    Article  CAS  Google Scholar 

  119. Sheridan, Q.R., Schneider, W.F., Maginn, E.J.: Anion dependent dynamics and water solubility explained by hydrogen bonding interactions in mixtures of water and aprotic heterocyclic anion ionic liquids. J. Phys. Chem. B 120(49), 12679–12686 (2016)

    Article  CAS  Google Scholar 

  120. Huang, W., Kong, L., Wang, X.: Electrical sliding friction lubricated with ionic liquids. Tribol. Lett. 65(1), 1–6 (2017)

    Article  Google Scholar 

  121. Gonda, A., Capan, R., Bechev, D., Sauer, B.: The influence of lubricant conductivity on bearing currents in the case of rolling bearing greases. Lubricants 7(12), 108 (2019)

    Article  Google Scholar 

  122. Chen, Y., Jha, S., Raut, A., Zhang, W., Liang, H.: Performance characteristics of lubricants in electric and hybrid vehicles: a review of current and future needs. Front. Mech. Eng. 6, 82 (2020)

    Article  Google Scholar 

  123. Harada, M., Yamanaka, A., Tanigaki, M., Tada, Y.: Mass and size effects on the transport properties of molten salts. J. Chem. Phys. 76(3), 1550–1556 (1982)

    Article  CAS  Google Scholar 

  124. Basouli, H., Mozaffari, F., Eslami, H.: Atomistic insights into structure, ion-pairing and ionic conductivity of 1-ethyl-3-methylimidazolium methylsulfate [Emim][MeSO4] ionic liquid from molecular dynamics simulation. J. Mol. Liq. 331, 115803 (2021)

    Article  CAS  Google Scholar 

  125. Hansen, J.-P., McDonald, I.R.: Theory of Simple Liquids: With Applications to Soft Matter. Academic Press, New York (2013)

    Google Scholar 

  126. Mao, Y., Zhang, Y.: Thermal conductivity, shear viscosity and specific heat of rigid water models. Chem. Phys. Lett. 542, 37–41 (2012)

    Article  CAS  Google Scholar 

  127. Gardas, R.L., Ge, R., Goodrich, P., Hardacre, C., Hussain, A., Rooney, D.W.: Thermophysical properties of amino acid-based ionic liquids. J. Chem. Eng. Data 55(4), 1505–1515 (2010)

    Article  CAS  Google Scholar 

  128. Ferreira, A.F., Simões, P.N., Ferreira, A.G.: Quaternary phosphonium-based ionic liquids: thermal stability and heat capacity of the liquid phase. J. Chem. Thermodyn. 45(1), 16–27 (2012)

    Article  CAS  Google Scholar 

  129. Oster, K., Jacquemin, J., Hardacre, C., Ribeiro, A., Elsinawi, A.: Further development of the predictive models for physical properties of pure ionic liquids: thermal conductivity and heat capacity. J. Chem. Thermodyn. 118, 1–15 (2018)

    Article  CAS  Google Scholar 

  130. Zhai, L., Zhong, Q., He, C., Wang, J.: Hydroxyl ammonium ionic liquids synthesized by water-bath microwave: synthesis and desulfurization. J. Hazard. Mater. 177(1–3), 807–813 (2010)

    Article  CAS  Google Scholar 

  131. Adamová, G., Gardas, R.L., Rebelo, L.P.N., Robertson, A.J., Seddon, K.R.: Alkyltrioctylphosphonium chloride ionic liquids: synthesis and physicochemical properties. Dalton Trans. 40(47), 12750–12764 (2011)

    Article  CAS  Google Scholar 

  132. Montanino, M., Alessandrini, F., Passerini, S., Appetecchi, G.B.: Water-based synthesis of hydrophobic ionic liquids for high-energy electrochemical devices. Electrochim. Acta 96, 124–133 (2013)

    Article  CAS  Google Scholar 

  133. Verma, C., Ebenso, E.E., Quraishi, M.: Transition metal nanoparticles in ionic liquids: synthesis and stabilization. J. Mol. Liq. 276, 826–849 (2019)

    Article  CAS  Google Scholar 

  134. Dong, R., Yu, Q., Bai, Y., Wu, Y., Ma, Z., Zhang, J., Zhang, C., Yu, B., Zhou, F., Liu, W., et al.: Towards superior lubricity and anticorrosion performances of proton-type ionic liquids additives for water-based lubricating fluids. Chem. Eng. J. 383, 123201 (2020)

    Article  CAS  Google Scholar 

  135. Wang, Y.L., Sarman, S., Glavatskih, S., Antzutkin, O.N., Rutland, M.W., Laaksonen, A.: Atomistic insight into tetraalkylphosphonium-bis (oxalato) borate ionic liquid/water mixtures. I. Local microscopic structure. J. Phys. Chem. B 119(16), 5251–5264 (2015)

    Article  CAS  Google Scholar 

  136. Kroon, M.C., Buijs, W., Peters, C.J., Witkamp, G.-J.: Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids. Thermochim. Acta 465(1–2), 40–47 (2007)

    Article  CAS  Google Scholar 

  137. Golets, M., Shimpi, M., Wang, Y.-L., Antzutkin, O., Glavatskih, S., Laaksonen, A.: Understanding the thermal decomposition mechanism of a halogen-free chelated orthoborate-based ionic liquid: a combined computational and experimental study. Phys. Chem. Chem. Phys. 18(32), 22458–22466 (2016)

    Article  CAS  Google Scholar 

  138. Sun, Z., Pan, J., Guo, J., Yan, F.: The alkaline stability of anion exchange membrane for fuel cell applications: the effects of alkaline media. Adv. Sci. 5(8), 1800065 (2018)

    Article  CAS  Google Scholar 

  139. Thasneema, K., Thayyil, M.S., Rosalin, T., Elyas, K., Dipin, T., Sahu, P.K., Kumar, N.K., Saheer, V., Messali, M., Hadda, T.B.: Thermal and spectroscopic investigations on three phosphonium based ionic liquids for industrial and biological applications. J. Mol. Liq. 307, 112960 (2020)

    Article  CAS  Google Scholar 

  140. Senftle, T.P., Hong, S., Islam, M.M., Kylasa, S.B., Zheng, Y., Shin, Y.K., Junkermeier, C., Engel-Herbert, R., Janik, M.J., Aktulga, H.M., Verstraelen, T., Grama, A., van Duin, A.C.T.: The ReaxFF reactive force-field: development, applications and future directions. NPJ Comput. Mater. 2, 15011 (2016)

    Article  CAS  Google Scholar 

  141. Martini, A., Eder, S.J., Dörr, N.: Tribochemistry: a review of reactive molecular dynamics simulations. Lubricants 8(4), 44 (2020)

    Article  Google Scholar 

  142. Han, S., Li, X., Guo, L., Sun, H., Zheng, M., Ge, W.: Refining fuel composition of rp-3 chemical surrogate models by reactive molecular dynamics and machine learning. Energy Fuels 34(9), 11381–11394 (2020)

    Article  CAS  Google Scholar 

  143. Gao, M., Li, X., Guo, L.: Pyrolysis simulations of Fugu coal by large-scale ReaxFF molecular dynamics. Fuel Process. Technol. 178, 197–205 (2018)

    Article  CAS  Google Scholar 

  144. Xin, L., Liu, C., Liu, Y., Huo, E., Li, Q., Wang, X., Cheng, Q.: Thermal decomposition mechanism of some hydrocarbons by ReaxFF-based molecular dynamics and density functional theory study. Fuel 275, 117885 (2020)

    Article  CAS  Google Scholar 

  145. Chenoweth, K., Cheung, S., Van Duin, A.C., Goddard, W.A., Kober, E.M.: Simulations on the thermal decomposition of a poly (dimethylsiloxane) polymer using the ReaxFF reactive force field. J. Am. Chem. Soc. 127(19), 7192–7202 (2005)

    Article  CAS  Google Scholar 

  146. Liu, Y., Hu, J., Hou, H., Wang, B.: Development and application of a ReaxFF reactive force field for molecular dynamics of perfluorinatedketones thermal decomposition. Chem. Phys. 538, 110888 (2020)

    Article  CAS  Google Scholar 

  147. Huo, E., Liu, C., Xu, X., Dang, C.: A ReaxFF-based molecular dynamics study of the pyrolysis mechanism of HFO-1336mzz(Z). Int. J. Refrig. 83, 118–130 (2017). https://doi.org/10.1016/j.ijrefrig.2017.07.009

    Article  CAS  Google Scholar 

  148. Cao, Y., Liu, C., Zhang, H., Xu, X., Li, Q.: Thermal decomposition of HFO-1234yf through ReaxFF molecular dynamics simulation. Appl. Therm. Eng. 126, 330–338 (2017)

    Article  CAS  Google Scholar 

  149. Lyu, R., Huang, Z., Deng, H., Wei, Y., Mou, C., Wang, L.: Anatomies for the thermal decomposition behavior and product rule of 5,5-dinitro-2h,2h–3,3-bi-1,2,4-triazole. RSC Adv. 11(63), 40182–40192 (2021)

    Article  CAS  Google Scholar 

  150. Lan, G., Li, J., Zhang, G., Ruan, J., Lu, Z., Jin, S., Cao, D., Wang, J.: Thermal decomposition mechanism study of 3-nitro-1, 2, 4-triazol-5-one (NTO): combined TG-FTIR-MS techniques and ReaxFF reactive molecular dynamics simulations. Fuel 295, 120655 (2021)

    Article  CAS  Google Scholar 

  151. Khajeh, A., Bhuiyan, F.H., Mogonye, J.-E., Pesce-Rodriguez, R.A., Berkebile, S., Martini, A.: Thermal decomposition of tricresyl phosphate on ferrous surfaces. J. Phys. Chem. C 125(9), 5076–5087 (2021)

    Article  CAS  Google Scholar 

  152. Ewen, J.P., Latorre, C.A., Gattinoni, C., Khajeh, A., Moore, J.D., Remias, J.E., Martini, A., Dini, D.: Substituent effects on the thermal decomposition of phosphate esters on ferrous surfaces. J. Phys. Chem. C 124(18), 9852–9865 (2020)

    Article  CAS  Google Scholar 

  153. Khajeh, A., Rahman, M.H., Liu, T., Panwar, P., Patel, M., Menezes, P.L., Martini, A.: Thermal decomposition of phosphonium salicylate and phosphonium benzoate ionic liquids. J. Mol. Liq. 352, 118700 (2021)

    Article  CAS  Google Scholar 

  154. Mendonca, A.C., Padua, A.A., Malfreyt, P.: Nonequilibrium molecular simulations of new ionic lubricants at metallic surfaces: prediction of the friction. J. Chem. Theory Comput. 9(3), 1600–1610 (2013)

    Article  CAS  Google Scholar 

  155. Pivnic, K., Bresme, F., Kornyshev, A.A., Urbakh, M.: Electrotunable friction in diluted room temperature ionic liquids: implications for nanotribology. ACS Appl. Nano Mater. 3(11), 10708–10719 (2020)

    Article  CAS  Google Scholar 

  156. Voeltzel, N., Fillot, N., Vergne, P., Joly, L.: Orders of magnitude changes in the friction of an ionic liquid on carbonaceous surfaces. J. Phys. Chem. C 122(4), 2145–2154 (2018)

    Article  CAS  Google Scholar 

  157. Voeltzel, N., Giuliani, A., Fillot, N., Vergne, P., Joly, L.: Nanolubrication by ionic liquids: molecular dynamics simulations reveal an anomalous effective rheology. Phys. Chem. Chem. Phys. 17(35), 23226–23235 (2015)

    Article  CAS  Google Scholar 

  158. Fajardo, O.Y., Bresme, F., Kornyshev, A.A., Urbakh, M.: Water in ionic liquid lubricants: friend and foe. ACS Nano 11(7), 6825–6831 (2017)

    Article  CAS  Google Scholar 

  159. Bahrami, M., Ghatee, M.H., Ayatollahi, S.F.: Simulation of wetting and interfacial behavior of quaternary ammonium and phosphonium ionic liquid nanodroplets over face-centered cubic metal surfaces. J. Phys. Chem. B 124(14), 2835–2847 (2020)

    Article  CAS  Google Scholar 

  160. Wang, Y.-L., Golets, M., Li, B., Sarman, S., Laaksonen, A.: Interfacial structures of trihexyltetradecylphosphonium-bis (mandelato) borate ionic liquid confined between gold electrodes. ACS Appl. Mater. Interfaces 9(5), 4976–4987 (2017)

    Article  CAS  Google Scholar 

  161. Alexander, J.S., Maxwell, C., Pencer, J., Saoudi, M.: Equilibrium molecular dynamics calculations of thermal conductivity: a how-to for the beginners. CNL Nuclear Rev. 9(1), 11–25 (2020)

    Article  Google Scholar 

  162. Müller-Plathe, F.: A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys. 106(14), 6082–6085 (1997)

    Article  Google Scholar 

  163. Salanne, M., Marrocchelli, D., Merlet, C., Ohtori, N., Madden, P.A.: Thermal conductivity of ionic systems from equilibrium molecular dynamics. J. Phys.: Condens. Matter 23(10), 102101 (2011)

    Google Scholar 

  164. Ishii, Y., Sato, K., Salanne, M., Madden, P.A., Ohtori, N.: Thermal conductivity of molten alkali metal fluorides (LiF, NaF, KF) and their mixtures. J. Phys. Chem. B 118(12), 3385–3391 (2014)

    Article  CAS  Google Scholar 

  165. Awad, A.N., Mohammed, S.S.: A study of enhancement of the properties of lubricant oil. Am. J. Chem. 4(1), 68–72 (2014)

    CAS  Google Scholar 

  166. Shah, J.K., Brennecke, J.F., Maginn, E.J.: Thermodynamic properties of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate from monte carlo simulations. Green Chem. 4(2), 112–118 (2002)

    Article  CAS  Google Scholar 

  167. Androulaki, E., Vergadou, N., Ramos, J., Economou, I.G.: Structure, thermodynamic and transport properties of imidazolium-based bis (trifluoromethylsulfonyl) imide ionic liquids from molecular dynamics simulations. Mol. Phys. 110(11–12), 1139–1152 (2012)

    Article  CAS  Google Scholar 

  168. Konieczny, J.K., Szefczyk, B.: Structure of alkylimidazolium-based ionic liquids at the interface with vacuum and water: a molecular dynamics study. J. Phys. Chem. B 119(9), 3795–3807 (2015)

    Article  CAS  Google Scholar 

  169. AlTuwaim, M.S., Alkhaldi, K.H., Al-Jimaz, A.S., Mohammad, A.A.: Temperature dependence of physicochemical properties of imidazolium-, pyroldinium-, and phosphonium-based ionic liquids. J. Chem. Eng. Data 59(6), 1955–1963 (2014)

    Article  CAS  Google Scholar 

  170. Bhattacharjee, A., Lopes-da-Silva, J.A., Freire, M.G., Coutinho, J.A., Carvalho, P.J.: Thermophysical properties of phosphonium-based ionic liquids. Fluid Phase Equilib. 400, 103–113 (2015)

    Article  CAS  Google Scholar 

  171. Rivera, N., García, A., Fernández-González, A., Blanco, D., González, R., Battez, A.H.: Tribological behavior of three fatty acid ionic liquids in the lubrication of different material pairs. J. Mol. Liq. 296, 111858 (2019)

    Article  CAS  Google Scholar 

  172. Fajardo, O., Bresme, F., Kornyshev, A., Urbakh, M.: Electrotunable lubricity with ionic liquid nanoscale films. Sci. Rep. 5(1), 1–7 (2015)

    Article  CAS  Google Scholar 

  173. Fajardo, O.Y., Bresme, F., Kornyshev, A.A., Urbakh, M.: Electrotunable friction with ionic liquid lubricants: how important is the molecular structure of the ions? J. Phys. Chem. Lett. 6(20), 3998–4004 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the National Science Foundation (Grant No. CMMI-2010205 and 2010584).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashlie Martini.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Panwar, P., Khajeh, A. et al. Review of Molecular Dynamics Simulations of Phosphonium Ionic Liquid Lubricants. Tribol Lett 70, 44 (2022). https://doi.org/10.1007/s11249-022-01583-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-022-01583-6

Keywords

Navigation