Skip to main content
Log in

On the Tribological Properties of RGO–MoS2 Composites Surface Modified by Oleic Acid

  • Article
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

To study the effect of oleic acid surface modified RGO/MoS2 composite lubricating additives on the friction and wear properties of 10# White Oil (10# WO). The influences of different concentrations of reduction graphene oxide/molybdenum disulfide (RGO–MoS2) and oleic acid surface modified reduction graphene oxide/molybdenum disulfide (OA-RGO–MoS2) on the lubricating properties in 10# WO was investigated using a four-ball long-term friction and wear tester. The microscopic morphology, lattice structure, composition and element valence of the prepared material were characterized by scanning electron microscope, Raman spectroscopy, Infrared Spectroscopy, X-ray diffractometer, X-ray photoelectron spectroscopy, element analyzer and other instruments. The diameter, structure, morphology, composition and element valence state of the wear scar were obtained by multifunctional universal tool microscope, scanning electron microscope and X-ray photoelectron spectroscopy. In the RGO–MoS2 white oil system, when 0.4 wt% RGO–MoS2 is added, the anti-friction effect is the best, and the average friction coefficient (AFC) reduced by 21.8%. When 0.2 wt% RGO–MoS2 is added, the anti-wear effect is the optimal, and the average wear scar diameter (AWSD) decreased by 12.4%. In the OA-RGO–MoS2 white oil system, when 0.2 wt% OA-RGO–MoS2 is added, the anti-friction and anti-wear effects are the best, and the AFC reduced by 33.3%, and AWSD reduced by 14.1%. Compared with RGO–MoS2, OA-RGO–MoS2 has a higher degree of graphitization, larger interlayer spacing, lower degree of layered accumulation, higher MoS2 load, and weaker thermal stability. Both lubricating additives have good anti-friction and anti-wear effects at low concentrations, and the anti-friction and anti-wear effects are more prominent after being modified by oleic acid. Analysis of friction mechanism shows that a lubricating protective film containing iron, oxygen, molybdenum, carbon, and sulfur is formed through adsorption or tribochemical reaction during the friction process, which improves the lubrication state and plays a role in reducing friction and anti-wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Sahoo, R.R., Biswas, S.K.: Effect of layered MoS2 nanoparticles on the frictional behavior and microstructure of lubricating greases. Tribol. Lett. 53, 157–171 (2014). https://doi.org/10.1007/s11249-013-0253-4

    Article  CAS  Google Scholar 

  2. Cui, W.L., Xu, S.S., Yan, B., Guo, Z.H., Xu, Q., Sumpter, B.G., Huang, J.S., Yin, S.W., Zhao, H.J., Wang, Y.: Triphasic 2D materials by vertically stacking laterally heterostructured 2H-/1T′-MoS2 on Graphene for enhanced photoresponse. Adv. Electron. Mater. 3(7), 1700024 (2017). https://doi.org/10.1002/aelm.201700024

    Article  CAS  Google Scholar 

  3. Lembke, D., Bertolazzi, S., Kis, A.: Single-layer MoS2 electronics. Acc. Chem. Res. 48(1), 100–110 (2015). https://doi.org/10.1021/ar500274q

    Article  CAS  Google Scholar 

  4. Hu, K.H., Xu, Y., Xu, Y.F., Hu, X.G.: Tribological properties of MoS2 lubricants with different morphologies in an ionic liquid. Tribology. 35(02), 167–175 (2015)

    CAS  Google Scholar 

  5. Hu, K.H., Hu, X.G., Xu, Y.F., Huang, F., Liu, J.S.: The effect of morphology on the tribological properties of MoS2 in liquid paraffin. Tribol. Lett. 40, 155–165 (2010). https://doi.org/10.1007/s11249-010-9651-z

    Article  CAS  Google Scholar 

  6. Wo, H.Z., Hu, K.H., Hu, X.G.: Tribological properties of MoS2 nanoparticles as additive in a machine Oil. Tribology. 24(1), 33–37 (2004)

    CAS  Google Scholar 

  7. Bai, G.L., Wu, Z.Z.: Synthesis and tribological properties of MoS2 nanospheres. Lubr. Eng. 38(4), 93–96 (2013). https://doi.org/10.3969/j.issn.0254-0150.2013.04.021

    Article  CAS  Google Scholar 

  8. Agrawal, N., Parihar, A.S., Singh, J.P., Goswami, T.H., Tripathi, D.N.: Efficient nanocomposite formation of acyrlo nitrile rubber by incorporation of graphite and graphene layers: reduction in friction and wear rate. Procedia Mater. Sci. 10, 139–148 (2015). https://doi.org/10.1016/j.mspro.2015.06.035

    Article  CAS  Google Scholar 

  9. Berman, D., Erdemir, A., Sumant, A.V.: Sumant few layer graphene to reduce wear and friction on sliding steel surfaces. Carbon 54, 454–459 (2013). https://doi.org/10.1016/j.carbon.2012.11.061

    Article  CAS  Google Scholar 

  10. Shi, Z., Shum, P.W., Wasy, A., Zhou, Z.F., Li, L.K.Y.: Tribological performance of few layer graphene on textured M2 steel surfaces. Surf. Coat. Technol. 296, 164–170 (2016). https://doi.org/10.1016/j.surfcoat.2016.04.031

    Article  CAS  Google Scholar 

  11. Berman, D., Erdemir, A., Sumant, A.V.: Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen. Carbon 59, 167–175 (2013). https://doi.org/10.1016/j.carbon.2013.03.006

    Article  CAS  Google Scholar 

  12. Zhang, X.F., Luster, B., Church, A., Muratore, C., Voevodin, A.A., Kohli, P., Aouadi, S., Talapatra, S.: Carbon nanotube-MoS2 composites as solid lubricants. ACS. Appl. Mater. Interfaces. 1, 735–739 (2009). https://doi.org/10.1021/am800240e

    Article  CAS  Google Scholar 

  13. Wang, J.X., Gu, M.Y., Zhu, C.Z., Ge, S.R., Liu, W.M.: Tribological properties of hybrid carbon fiber and MoS2 peinforced polyamide 1010 composites. Acta. Mater. Compos. Sin. 20(2), 13–18 (2003)

    Google Scholar 

  14. Tan, F.Z., Zhao, Y.R., Cao, Y.F., Wang, Y.H., Sun, Y.F.: Preparation of MoS2/graphene and its performance for anode materials of Li-ion battery. Chem. Ind. Eng. Progress. 36(12), 4519–4523 (2017)

    Google Scholar 

  15. Wang, S.R., Zhang, Y., Abidi, N., Cabrales, L.: Wettability and surface free energy of graphene films. Langmuir 25, 11078–11081 (2009). https://doi.org/10.1021/la901402f

    Article  CAS  Google Scholar 

  16. Shi, Y.M., Li, H.N., Wong, J.I., Zhang, X.T., Wang, Y., Song, H.H., Yang, H.Y.: MoS2 surface structure tailoring via carbonaceous promoter. Sci. Rep. 5, 10378 (2015). https://doi.org/10.1038/srep10378

    Article  Google Scholar 

  17. Bahuguna, A., Kumar, S., Sharma, V., Reddy, K.L., Bhattacharyya, K., Ravikumar, P.C., Krishnan, V.: Nanocomposite of MoS2-RGO as facile, heterogeneous, recyclable, and highly efficient green catalyst for one-pot synthesis of indole alkaloids. ACS. Sustainable. Chem. Eng. 5, 8551–8567 (2017). https://doi.org/10.1021/acssuschemeng.7b00648

    Article  CAS  Google Scholar 

  18. Meng, X.Y., Yu, L., Ma, C., Nan, B., Si, R., Tu, Y.C., Deng, J., Deng, D.H., Bao, X.H.: Three-dimensionally hierarchical MoS2/graphene architecture for high-performance hydrogen evolution reaction. Nano Energy 61, 611–616 (2019). https://doi.org/10.1016/j.nanoen.2019.04.049

    Article  CAS  Google Scholar 

  19. Yang, L., Wang, X.Z., Liu, Y., Yu, Z.F., Liang, J.J., Chen, B.B., Shi, C., Tian, S., Li, X., Qiu, J.S.: Monolayer MoS2 anchored on reduced graphene oxide nanosheets for efficient hydrodesulfurization. Appl. Catal. B 200, 211–221 (2017). https://doi.org/10.1016/j.apcatb.2016.07.006

    Article  CAS  Google Scholar 

  20. Li, J.L., Liu, X.J., Pan, L.K., Qin, W., Chen, T.Q., Sun, Z.: MoS2-reduced graphene oxide composites synthesized via a microwave-assisted method for visible-light photocatalytic degradation of methylene blue. RSC. Adv. 4(19), 9647–9651 (2014). https://doi.org/10.1039/c3ra46956e

    Article  CAS  Google Scholar 

  21. Jeong, H.K., Lee, Y.P., Lahaye, R.J.W.E., Park, M.H., An, K.H., Kim, I.J., Yang, C.W., Park, C.Y., Ruoff, R.S., Lee, Y.H.: Evidence of graphitic AB stacking order of graphite oxides. J. Am. Chem. Soc. 130(4), 1362–1366 (2008). https://doi.org/10.1021/ja076473o

    Article  CAS  Google Scholar 

  22. Zheng, A.D., Yang, C.G., Wang, D.E., Tian, Z.J.: Highly active MoS2/reduced graphene oxide catalyst for anthracene hydrogenation. Chem. Ind. Eng. Progress. 1–14 (2020). https://doi.org/10.16085/j.issn.1000-6613.2021-0302.

  23. Li, M., Wang, D.E., Li, J.H., Pan, Z.D., Ma, H.J., Jiang, Y.X., Tian, Z.J.: Facile hydrothermal synthesis of MoS2 nanosheets with controllable structures and enhanced catalytic performance for anthracene hydrogenation. RSC Adv. 6(75), 71534–71542 (2016). https://doi.org/10.1039/c6ra16084k

    Article  CAS  Google Scholar 

  24. Li, J.H., Wang, D.E., Ma, H.J., Li, M., Pan, Z.D., Jiang, Y.X., Tian, Z.J.: Ionic liquid assisted hydrotheMRal synthesis of MoS2 double-shell polyhedral cages with enhanced catalytic hydrogenation activities. RSC Adv. 7(38), 23523–23529 (2017). https://doi.org/10.1039/c7ra02482g

    Article  CAS  Google Scholar 

  25. Ba, Z.W., Huang, G.W., Qiao, D., Feng, D.P.: Preparation and tribological performance of RGO/MoS2 as composite nano-additives. Tribology. 39(02), 140–149 (2019)

    Google Scholar 

  26. Ma, Z.H., Yao, J., Zhang, Z.Y., Zhang, X., Zhang, X.J., Sun, M.J.: Mercury vapor sensor based on composites of MoS2/Graphene. J. Synt. Cryst. 49(06), 1107–1111 (2020)

    CAS  Google Scholar 

  27. Li, B., Zhou, L., Wu, D., Peng, H.L., Yan, K., Zhou, Y., Liu, Z.F.: Photochemical chlorination graphene. ACS. NANO 5(7), 5957–5961 (2011). https://doi.org/10.1021/nn201731t

    Article  CAS  Google Scholar 

  28. Li, X., Li, J.H., Wang, K., Wang, X.H., Wang, S.P., Chu, X.Y., Xu, M.Z., Fang, X., Wei, Z.P., Zhai, Y.J., Zou, B.: Pressure and temperature-dependent Raman spectra of MoS2 film. Appl. Phys. Lett. 109, 242101 (2016). https://doi.org/10.1063/1.4968534

    Article  CAS  Google Scholar 

  29. Zhou, X.S., Wan, L.J., Guo, Y.G.: Synthesis of MoS2 nanosheet-graphene nanosheet hybrid materials for stable lithium storage. Chem. Commun. 49(18), 1838–1840 (2013). https://doi.org/10.1039/c3cc38780a

    Article  CAS  Google Scholar 

  30. Yang, H., Wang, M., Liu, X.W., Jiang, Y., Yu, Y.: MoS2 embedded in 3D interconnected carbon nanofiber film as a free-standing anode for sodium-ion batteries. Nano Res. 11(7), 3844–3853 (2018). https://doi.org/10.1007/s12274-017-1958-8

    Article  CAS  Google Scholar 

  31. Park, S.K., Lee, J., Bong, S., Jang, B., Seong, K.D., Piao, Y.Z.: Scalable synthesis of few-layer MoS2 incorporated into hierarchical porous carbon nanosheets for high-perfoMRance Li-and Na-ion battery anodes. ACS. Appl. Mater. Interfaces. 8(30), 19456–19465 (2016). https://doi.org/10.1021/acsami.6b05010

    Article  CAS  Google Scholar 

  32. Chen, C.S., Chen, X.H., Xu, L.S., Yang, Z., Li, W.H.: Modification of multi-walled carbon nanotubes with fatty acid and their tribological properties as lubricant additive. Carbon 43(8), 1660–1666 (2005). https://doi.org/10.1016/j.carbon.2005.01.044

    Article  CAS  Google Scholar 

  33. Lin, J.S., Wang, L.W., Chen, G.H.: Modification of graphene platelets and their tribological properties as a lubricant additive. Tribol. Lett. 41(1), 209–215 (2011). https://doi.org/10.1007/s11249-010-9702-5

    Article  CAS  Google Scholar 

  34. Hu, E.Z., Yu, D.R., Tang, Y.C., Wu, Y., Hun, K.H., Song, R.H.: Rice husk ceramic particles improving lubrication property of liquid paraffin. Trans. Chin. Soc. Agric. Eng. 33(10), 265–270 (2017)

    Google Scholar 

  35. Liu, T.X., Kang, K., Wang, J., Tang, Z.Q., Hu, X.G.: Effect of nano-LaF3 on the granular flow lubrication behavior of biomass fuel soot. Chem. Ind. Eng. Progress. 39(08), 3354–3361 (2020)

    Google Scholar 

  36. Zhao, J., Chen, G.Y., He, Y.Y., Li, S.X., Duan, Z.Q., Li, Y.R., Luo, J.B.: A novel route to the synthesis of an Fe3O4/h-BN 2D nanocomposite as a lubricant additive. RSC Adv. 9(12), 6583–6588 (2019). https://doi.org/10.1039/c8ra10312g

    Article  CAS  Google Scholar 

  37. Zhang, Q.Q., Wu, B., Song, R.H., Song, H., Zhang, J., Hu, X.G.: Preparation characterization and tribological properties of polyalphaolefin with magnetic reduced graphene oxide/Fe3O4. Tribol. Int. 141, 105952 (2020). https://doi.org/10.1016/j.triboint.2019.105952

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of the Ningxia Hui Autonomous Region (2021AAC03181), the Fundamental Research Funds for the Central Universities of the North Minzu University (FWNX29), the Ningxia low-grade resource high value utilization and environmental chemical integration technology innovation team project.

Author information

Authors and Affiliations

Authors

Contributions

TL and JQ conceived and designed the experiments; JQ performed the experiments; TL contributed reagents/materials and analysis tools; JW and JL helped some results analysis and discussion; JQ and TL wrote the paper.

Corresponding authors

Correspondence to Tianxia Liu or Jian Qin.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Qin, J., Wang, J. et al. On the Tribological Properties of RGO–MoS2 Composites Surface Modified by Oleic Acid. Tribol Lett 70, 14 (2022). https://doi.org/10.1007/s11249-021-01559-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-021-01559-y

Keywords

Navigation