Skip to main content
Log in

Ionic Liquid-Nanoparticle-Based Hybrid-Nanolubricant Additives for Potential Enhancement of Tribological Properties of Lubricants and Their Comparative Study with ZDDP

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Can ZDDP (a common antiwear additive) be replaced with ionic liquids (ILs) and nanoparticle (NPs)-based hybrid nanolubricant additives? To answer this question, three ionic liquids (ILs) trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl) phosphinate i.e. ([P66614] [BTMPP]), trihexyltetradecylphosphonium bis(2-ethylhexyl)phosphate i.e. ([P66614] [DEHP]) and trihexyltetradecylphosphonium dibutyl phosphate i.e. ([P66614] [DBP]) were added with nanoparticles (hBN and ZnO) in synthetic base oil (PAO) to obtain hybrid nanolubricants (PAO+ILs+NPs). This is the first study to explore ([P66614] [DBP]) IL as a lubricant additive with respect to its tribological and EP properties. Tribological and extreme pressure performances of the lubricants were tested using a four-ball tribometer. ([P66614] [DEHP]) and ([P66614] [DBP]) hybrid nanolubricants showed excellent synergy in friction (23–30%) and wear (41–57%) reduction, while ([P66614] [BTMPP]) hybrid nanolubricants showed marginal improvement over their respective single additive. Both single and hybrid nanolubricants enhanced extreme pressure properties of the base oil in the range of 15–75%, and the highest reduction of 75% was observed with ([P66614] [DEHP]) hybrid nanolubricants. All the hybrid nanolubricants outperformed commercial ZDDP in friction and wear reduction despite having no Sulphur and half of the phosphorus concentration. Moreover, all three ILs improved the dispersion stability of the NPs in the base oil by few days but were unable to provide long term stability on their own. The SEM–EDS and XPS spectra showed active elements (P, B, N, and Zn) on the respective worn surface, confirming the tribochemical reaction and tribosintering process as the dominant mechanism of tribofilm formation for ILs and NPs, respectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Holmberg, K., Andersson, P., Erdemir, A.: Global energy consumption due to friction in passenger cars. Tribiol. Int. 47, 221–234 (2012). https://doi.org/10.1016/j.triboint.2011.11.022

    Article  Google Scholar 

  2. Spikes, H.: Friction modifier additives. Tribol. Lett. (2015). https://doi.org/10.1007/s11249-015-0589-z

    Article  Google Scholar 

  3. Rizvi, S.Q.A.: A Comprehensive Review of Lubricant Chemistry, Technology, Selection, and Design (2009). https://doi.org/10.1520/MNL59-EB

  4. Somers, A.E., Biddulph, S.M., Howlett, P.C., Sun, J., MacFarlane, D.R., Forsyth, M.: A comparison of phosphorus and fluorine containing IL lubricants for steel on aluminium. Phys. Chem. Chem. Phys. 14, 8224–8231 (2012). https://doi.org/10.1039/c2cp40736a

    Article  CAS  Google Scholar 

  5. Zhou, Y., Qu, J.: Ionic liquids as lubricant additives: a review. ACS Appl. Mater. Interfaces 9, 3209–3222 (2017). https://doi.org/10.1021/acsami.6b12489

    Article  CAS  Google Scholar 

  6. Ye, C., Liu, W., Chen, Y., Yu, L.: Room-temperature ionic liquids: a novel versatile lubricant. Chem. Commun. 21, 2244–2245 (2001). https://doi.org/10.1039/b106935g

    Article  CAS  Google Scholar 

  7. Minami, I.: Ionic liquids in tribology. Molecules 14, 2286–2305 (2009). https://doi.org/10.3390/molecules14062286

    Article  CAS  Google Scholar 

  8. Zhou, F., Liang, Y., Liu, W.: Ionic liquid lubricants: designed chemistry for engineering applications. Chem. Soc. Rev. 38, 2590–2599 (2009). https://doi.org/10.1039/b817899m

    Article  CAS  Google Scholar 

  9. Minami, I., Inada, T., Sasaki, R., Nanao, H.: Tribo-chemistry of phosphonium-derived ionic liquids. Tribol. Lett. 40, 225–235 (2010). https://doi.org/10.1007/s11249-010-9626-0

    Article  CAS  Google Scholar 

  10. Perkin, S.: Ionic liquids in confined geometries. Phys. Chem. Chem. Phys. 14, 5052–5062 (2012). https://doi.org/10.1039/c2cp23814d

    Article  CAS  Google Scholar 

  11. Iglesias, P., Bermúdez, M.D., Carrión, F.J., Martínez-Nicolás, G.: Friction and wear of aluminium-steel contacts lubricated with ordered fluids-neutral and ionic liquid crystals as oil additives. Wear 256, 386–392 (2004). https://doi.org/10.1016/S0043-1648(03)00442-3

    Article  CAS  Google Scholar 

  12. Palacio, M., Bhushan, B.: A review of ionic liquids for green molecular lubrication in nanotechnology. Tribol. Lett. 40, 247–268 (2010). https://doi.org/10.1007/s11249-010-9671-8

    Article  CAS  Google Scholar 

  13. Phillips, B.S., Zabinski, J.S.: Ionic liquid lubrication effects on ceramics in a water environment. Tribol. Lett. 17, 533–541 (2004). https://doi.org/10.1023/B:TRIL.0000044501.64351.68

    Article  CAS  Google Scholar 

  14. Blanco, D., Battez, A.H., Viesca, J.L., González, R., Fernández-González, A.: Lubrication of CrN coating with ethyl-dimethyl-2-methoxyethylammonium tris(pentafluoroethyl)trifluorophosphate ionic liquid as additive to PAO 6. Tribol. Lett. 41, 295–302 (2011). https://doi.org/10.1007/s11249-010-9714-1

    Article  CAS  Google Scholar 

  15. Qu, J., Bansal, D.G., Yu, B., Howe, J.Y., Luo, H., Dai, S., Li, H., Blau, P.J., Bunting, B.G., Mordukhovich, G., Smolenski, D.J.: Antiwear performance and mechanism of an oil-miscible ionic liquid as a lubricant additive. ACS Appl. Mater. Interfaces 4, 997–1002 (2012). https://doi.org/10.1021/am201646k

    Article  CAS  Google Scholar 

  16. Cai, M., Yu, Q., Liu, W., Zhou, F.: Ionic liquid lubricants: when chemistry meets tribology. Chem. Soc. Rev. 49, 7753–7818 (2020). https://doi.org/10.1039/d0cs00126k

    Article  CAS  Google Scholar 

  17. Khan, A., Yasa, S.R., Gusain, R., Khatri, O.P.: Oil-miscible, halogen-free, and surface-active lauryl sulphate-derived ionic liquids for enhancement of tribological properties. J. Mol. Liq. 318, 114005 (2020). https://doi.org/10.1016/j.molliq.2020.114005

    Article  CAS  Google Scholar 

  18. Fu, X., Sun, L., Zhou, X., Li, Z., Ren, T.: Tribological study of oil-miscible quaternary ammonium phosphites ionic liquids as lubricant additives in PAO. Tribol. Lett. 60, 1–12 (2015). https://doi.org/10.1007/s11249-015-0596-0

    Article  CAS  Google Scholar 

  19. Ma, R., Li, W., Zhao, Q., Zheng, D., Wang, X.: In situ synthesized phosphate-based ionic liquids as high-performance lubricant additives. Tribol. Lett. 67, 1–9 (2019). https://doi.org/10.1007/s11249-019-1175-6

    Article  CAS  Google Scholar 

  20. Totolin, V., Minami, I., Gabler, C., Brenner, J., Dörr, N.: Lubrication mechanism of phosphonium phosphate ionic liquid additive in alkylborane-imidazole complexes. Tribol. Lett. 53, 421–432 (2014). https://doi.org/10.1007/s11249-013-0281-0

    Article  CAS  Google Scholar 

  21. Qiao, D., Wang, H., Feng, D.: Tribological performance and mechanism of phosphate ionic liquids as additives in three base oils for steel-on-aluminum contact. Tribol. Lett. 55, 517–531 (2014). https://doi.org/10.1007/s11249-014-0377-1

    Article  CAS  Google Scholar 

  22. Guo, H., Adukure, A.R., Iglesias, P.: Effect of ionicity of three protic ionic liquids as neat lubricants and lubricant additives to a biolubricant. Coatings (2019). https://doi.org/10.3390/coatings9110713

    Article  Google Scholar 

  23. Zheng, D., Wang, X., Zhang, M., Ju, C.: Synergistic effects between the two choline-based ionic liquids as lubricant additives in glycerol aqueous solution. Tribol. Lett. 67, 1–13 (2019). https://doi.org/10.1007/s11249-019-1161-z

    Article  CAS  Google Scholar 

  24. Khemchandani, B., Somers, A., Howlett, P., Jaiswal, A.K., Sayanna, E., Forsyth, M.: A biocompatible ionic liquid as an antiwear additive for biodegradable lubricants. Tribol. Int. 77, 171–177 (2014). https://doi.org/10.1016/j.triboint.2014.04.016

    Article  CAS  Google Scholar 

  25. Uflyand, I.E., Zhinzhilo, V.A., Burlakova, V.E.: Metal-containing nanomaterials as lubricant additives: state-of-the-art and future development. Friction 7, 93–116 (2019). https://doi.org/10.1007/s40544-019-0261-y

    Article  Google Scholar 

  26. Gulzar, M., Masjuki, H.H., Kalam, M.A., Varman, M., Zulkifli, N.W.M., Mufti, R.A., Zahid, R.: Tribological performance of nanoparticles as lubricating oil additives. J. Nanopart. Res. 18, 1–25 (2016). https://doi.org/10.1007/s11051-016-3537-4

    Article  CAS  Google Scholar 

  27. Saini, V., Bijwe, J., Seth, S., Ramakumar, S.S.V.: Potential exploration of nano-talc particles for enhancing the anti-wear and extreme pressure performance of oil. Tribol. Int. 151, 106452 (2020). https://doi.org/10.1016/j.triboint.2020.106452

    Article  CAS  Google Scholar 

  28. Saini, V., Bijwe, J., Seth, S., Ramakumar, S.S.V.: Role of base oils in developing extreme pressure lubricants by exploring nano-PTFE particles. Tribol. Int. 143, 106071 (2020). https://doi.org/10.1016/j.triboint.2019.106071

    Article  CAS  Google Scholar 

  29. Alves, S.M., Mello, V.S., Faria, E.A., Camargo, A.P.P.: Nanolubricants developed from tiny CuO nanoparticles. Tribol. Int. 100, 263–271 (2016). https://doi.org/10.1016/j.triboint.2016.01.050

    Article  CAS  Google Scholar 

  30. Gong, K., Lou, W., Zhao, G., Wu, X., Wang, X.: Investigation on tribological behaviors of MoS2 and WS2 quantum dots as lubricant additives in ionic liquids under severe conditions. Friction 8, 674–683 (2020). https://doi.org/10.1007/s40544-019-0290-6

    Article  CAS  Google Scholar 

  31. Saini, V., Bijwe, J., Seth, S., Ramakumar, S.S.V.: Interfacial interaction of PTFE sub-micron particles in oil with steel surfaces as excellent extreme-pressure additive. J. Mol. Liq. (2020). https://doi.org/10.1016/j.molliq.2020.115238

    Article  Google Scholar 

  32. Dai, W., Kheireddin, B., Gao, H., Liang, H.: Roles of nanoparticles in oil lubrication. Tribol. Int. 102, 88–98 (2016). https://doi.org/10.1016/j.triboint.2016.05.020

    Article  CAS  Google Scholar 

  33. Fan, X., Wang, L.: High-performance lubricant additives based on modified graphene oxide by ionic liquids. J. Colloid Interface Sci. 452, 98–108 (2015). https://doi.org/10.1016/j.jcis.2015.04.025

    Article  CAS  Google Scholar 

  34. Sanes, J., Avilés, M.D., Saurín, N., Espinosa, T., Carrión, F.J., Bermúdez, M.D.: Synergy between graphene and ionic liquid lubricant additives. Tribol. Int. 116, 371–382 (2017). https://doi.org/10.1016/j.triboint.2017.07.030

    Article  CAS  Google Scholar 

  35. Gusain, R., Mungse, H.P., Kumar, N., Ravindran, T.R., Pandian, R., Sugimura, H., Khatri, O.P.: Covalently attached graphene-ionic liquid hybrid nanomaterials: synthesis, characterization and tribological application. J. Mater. Chem. A 4, 926–937 (2016). https://doi.org/10.1039/c5ta08640j

    Article  CAS  Google Scholar 

  36. Li, Y., Zhang, S., Ding, Q., Li, H., Qin, B., Hu, L.: Understanding the synergistic lubrication effect of 2-mercaptobenzothiazolate based ionic liquids and Mo nanoparticles as hybrid additives. Tribol. Int. 125, 39–45 (2018). https://doi.org/10.1016/j.triboint.2018.04.019

    Article  CAS  Google Scholar 

  37. Upendra, M., Vasu, V.: Synergistic effect between phosphonium-based ionic liquid and three oxide nanoparticles as hybrid lubricant additives. J. Tribol. (2020). https://doi.org/10.1115/1.4045769

    Article  Google Scholar 

  38. Nasser, K.I., Liñeira del Río, J.M., López, E.R., Fernández, J.: Synergistic effects of hexagonal boron nitride nanoparticles and phosphonium ionic liquids as hybrid lubricant additives. J. Mol. Liq. 311, 113343 (2020). https://doi.org/10.1016/j.molliq.2020.113343

    Article  CAS  Google Scholar 

  39. Zhou, Y., Dyck, J., Graham, T.W., Luo, H., Leonard, D.N., Qu, J.: Ionic liquids composed of phosphonium cations and organophosphate, carboxylate, and sulfonate anions as lubricant antiwear additives. Langmuir 30, 13301–13311 (2014). https://doi.org/10.1021/la5032366

    Article  CAS  Google Scholar 

  40. Barnhill, W.C., Qu, J., Luo, H., Meyer, H.M., Ma, C., Chi, M., Papke, B.L.: Phosphonium-organophosphate ionic liquids as lubricant additives: effects of cation structure on physicochemical and tribological characteristics. ACS Appl. Mater. Interfaces 6, 22585–22593 (2014). https://doi.org/10.1021/am506702u

    Article  CAS  Google Scholar 

  41. Sun, J., Howlett, P.C., MacFarlane, D.R., Lin, J., Forsyth, M.: Synthesis and physical property characterisation of phosphonium ionic liquids based on P(O)2(OR)2- and P(O)2(R)2-anions with potential application for corrosion mitigation of magnesium alloys. Electrochim. Acta 54, 254–260 (2008). https://doi.org/10.1016/j.electacta.2008.08.020

    Article  CAS  Google Scholar 

  42. Alves, S.M., Barros, B.S., Trajano, M.F., Ribeiro, K.S.B., Moura, E.: Tribological behavior of vegetable oil-based lubricants with nanoparticles of oxides in boundary lubrication conditions. Tribol. Int. 65, 28–36 (2013). https://doi.org/10.1016/j.triboint.2013.03.027

    Article  CAS  Google Scholar 

  43. Mousavi, S.B., Heris, S.Z., Estellé, P.: Experimental comparison between ZnO and MoS2 nanoparticles as additives on performance of diesel oil-based nano lubricant. Sci. Rep. 10, 1–17 (2020). https://doi.org/10.1038/s41598-020-62830-1

    Article  CAS  Google Scholar 

  44. Wu, L., Zhang, Y., Yang, G., Zhang, S., Yu, L., Zhang, P.: Tribological properties of oleic acid-modified zinc oxide nanoparticles as the lubricant additive in poly-alpha olefin and diisooctyl sebacate base oils. RSC Adv. 6, 69836–69844 (2016). https://doi.org/10.1039/c6ra10042b

    Article  CAS  Google Scholar 

  45. Gupta, M.K., Bijwe, J., Kadiyala, A.K.: Tribo-investigations on oils with dispersants and hexagonal boron nitride particles. J. Tribol. (2018). https://doi.org/10.1115/1.4038105

    Article  Google Scholar 

  46. Abdullah, M.I.H.C., Bin Abdollah, M.F., Amiruddin, H., Tamaldin, N., Nuri, N.R.M., Hassan, M., Rafeq, S.A.: Improving engine oil properties by dispersion of hBN/Al2O3 nanoparticles. Appl. Mech. Mater. 607, 70–73 (2014). https://doi.org/10.4028/www.scientific.net/AMM.607.70

    Article  CAS  Google Scholar 

  47. Ramteke, S.M., Chelladurai, H.: Effects of hexagonal boron nitride based nanofluid on the tribological and performance, emission characteristics of a diesel engine: an experimental study. Eng. Rep. 2, 1–20 (2020). https://doi.org/10.1002/eng2.12216

    Article  CAS  Google Scholar 

  48. Wan, Q., Jin, Y., Sun, P., Ding, Y.: Tribological behaviour of a lubricant oil containing boron nitride nanoparticles. Procedia Eng. 102, 1038–1045 (2015). https://doi.org/10.1016/j.proeng.2015.01.226

    Article  CAS  Google Scholar 

  49. Otero, I., López, E.R., Reichelt, M., Villanueva, M., Salgado, J., Fernández, J.: Ionic liquids based on phosphonium cations As neat lubricants or lubricant additives for a steel/steel contact. ACS Appl. Mater. Interfaces 6, 13115–13128 (2014). https://doi.org/10.1021/am502980m

    Article  CAS  Google Scholar 

  50. Seymour, B.T., Fu, W., Wright, R.A.E., Luo, H., Qu, J., Dai, S., Zhao, B.: Improved lubricating performance by combining oil-soluble hairy silica nanoparticles and an ionic liquid as an additive for a synthetic base oil. ACS Appl. Mater. Interfaces 10, 15129–15139 (2018). https://doi.org/10.1021/acsami.8b01579

    Article  CAS  Google Scholar 

  51. Chen, Y., Renner, P., Liang, H.: Dispersion of nanoparticles in lubricating oil: a critical review. Lubricants (2019). https://doi.org/10.3390/lubricants7010007

    Article  Google Scholar 

  52. Kato, H., Komai, K.: Tribofilm formation and mild wear by tribo-sintering of nanometer-sized oxide particles on rubbing steel surfaces. Wear 262, 36–41 (2007). https://doi.org/10.1016/j.wear.2006.03.046

    Article  CAS  Google Scholar 

  53. Qu, J., Barnhill, W.C., Luo, H., Meyer, H.M., Leonard, D.N., Landauer, A.K., Kheireddin, B., Gao, H., Papke, B.L., Dai, S.: Synergistic effects between phosphonium-alkylphosphate ionic liquids and zinc dialkyldithiophosphate (ZDDP) as lubricant additives. Adv. Mater. 27, 4767–4774 (2015). https://doi.org/10.1002/adma.201502037

    Article  CAS  Google Scholar 

  54. Li, W., Kumara, C., Luo, H., Meyer, H.M., He, X., Ngo, D., Kim, S.H., Qu, J.: Ultralow boundary lubrication friction by three-way synergistic interactions among ionic liquid, friction modifier, and dispersant. ACS Appl. Mater. Interfaces 12, 17077–17090 (2020). https://doi.org/10.1021/acsami.0c00980

    Article  CAS  Google Scholar 

  55. Li, Z., Ren, T.: Synergistic effects between alkylphosphate-ammonium ionic liquid and alkylphenylborate as lubricant additives in rapeseed oil. Tribol. Int. 109, 373–381 (2017). https://doi.org/10.1016/j.triboint.2016.11.032

    Article  CAS  Google Scholar 

  56. Zhang, J., Spikes, H.: On the mechanism of ZDDP antiwear film formation. Tribol. Lett. 63, 1–15 (2016). https://doi.org/10.1007/s11249-016-0706-7

    Article  CAS  Google Scholar 

  57. Anand, M., Hadfield, M., Viesca, J.L., Thomas, B., Hernández Battez, A., Austen, S.: Ionic liquids as tribological performance improving additive for in-service and used fully-formulated diesel engine lubricants. Wear 334–335, 67–74 (2015). https://doi.org/10.1016/j.wear.2015.01.055

    Article  CAS  Google Scholar 

  58. Westerholt, A., Weschta, M., Bösmann, A., Tremmel, S., Korth, Y., Wolf, M., Schlücker, E., Wehrum, N., Lennert, A., Uerdingen, M., Holweger, W., Wartzack, S., Wasserscheid, P.: Halide-free synthesis and tribological performance of oil-miscible ammonium and phosphonium-based ionic liquids. ACS Sustain. Chem. Eng. 3, 797–808 (2015). https://doi.org/10.1021/sc500517n

    Article  CAS  Google Scholar 

  59. Barnhill, W.C., Luo, H., Meyer, H.M., Ma, C., Chi, M., Papke, B.L., Qu, J.: Tertiary and quaternary ammonium-phosphate ionic liquids as lubricant additives. Tribol. Lett. (2016). https://doi.org/10.1007/s11249-016-0707-6

    Article  Google Scholar 

  60. Kimura, Y., Wakabayashi, T., Okada, K., Wada, T., Nishikawa, H.: Boron nitride as a lubricant additive. Wear 232, 199–206 (1999). https://doi.org/10.1016/S0043-1648(99)00146-5

    Article  CAS  Google Scholar 

  61. Rastogi, P.K., Sahoo, K.R., Thakur, P., Sharma, R., Bawari, S., Podila, R., Narayanan, T.N.: Graphene-hBN non-van der Waals vertical heterostructures for four-electron oxygen reduction reaction. Phys. Chem. Chem. Phys. (2019). https://doi.org/10.1039/C8CP06155F

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank the Science and Engineering Research Board (SERB) government of India (Grant No. CRG/2018/002076) for funding this research. We furthermore acknowledge the Tribology lab and Synthesis lab of the National Institute of Technology Warangal for providing tribological testing and ionic liquid synthesis facilities, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Upendra Maurya.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 355 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, U., Vasu, V. & Kashinath, D. Ionic Liquid-Nanoparticle-Based Hybrid-Nanolubricant Additives for Potential Enhancement of Tribological Properties of Lubricants and Their Comparative Study with ZDDP. Tribol Lett 70, 11 (2022). https://doi.org/10.1007/s11249-021-01551-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-021-01551-6

Keywords

Navigation