Skip to main content
Log in

Nanoscale Friction of Hydrophilic and Hydrophobic Self-Assembled Monolayers in Water

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Self-assembled monolayers (SAMs) can reduce friction in boundary lubricated contacts by providing a low shear strength interface for sliding. However, the nanoscale mechanisms underlying low friction on SAMs are still not fully understood, especially in liquid environments in which hydrophobility or hydrophilicity affects friction. To understand this effect, friction of SAMs in water was measured using atomic force microscope experiments and molecular dynamics simulations, where hydrophilicity or hydrophobicity was determined by the terminal group of the alkanethiols. The friction on hydrophilic SAMs was larger than that on hydrophobic SAMs in both experiments and simulations, but this trend could not be explained by the strength of the adhesive force between the tip and the SAMs. Instead, analysis of the contributions of the water and SAMs to the total friction force revealed that the difference between the hydrophobic and hydrophilic SAMs could be explained by interactions between the tip and water during sliding. The much larger tip-water force on hydrophilic SAMs was attributed to a dense layer of water that was displaced during sliding as well as hydrogen bonds that formed between the water molecules and hydrophilic SAMs and were then broken by the tip as it slid, leading to higher friction force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cheng, H., Hu, Y.: Influence of chain ordering on frictional properties of self-assembled monolayers (SAMs) in nano-lubrication. Adv Colloid Interface Sci 171, 53–65 (2012)

    Google Scholar 

  2. Bhushan, B.: Nanotribology and Nanomechanics I: Measurement Techniques and Nanomechanics, vol. 1. Springer, New York (2011)

    Google Scholar 

  3. Chaudhury, M.K.: Adhesion and friction of self-assembled organic monolayers. Curr. Opin. Colloid Interface Sci. 2, 65–69 (1997)

    CAS  Google Scholar 

  4. Lee, S., Heeb, R., Venkataraman, N.V., Spencer, N.D.: Macroscopic tribological testing of alkanethiol self-assembled monolayers (SAMs): pin-on-disk tribometry with elastomeric sliding contacts. Tribol Lett. 28, 229–239 (2007)

    CAS  Google Scholar 

  5. Bhushan, B.: Self-assembled monolayers (SAMs) for controlling adhesion, friction, and wear. Handbook of Nanotechnology, pp. 1379–1416. Springer, Berlin (2007)

    Google Scholar 

  6. Lio, A., Charych, D., Salmeron, M.: Comparative atomic force microscopy study of the chain length dependence of frictional properties of alkanethiols on gold and alkylsilanes on mica. J. Phys. Chem. B 101, 3800–3805 (1997)

    CAS  Google Scholar 

  7. Zhang, L., Li, L., Chen, S., Jiang, S.: Measurements of friction and adhesion for alkyl monolayers on Si (111) by scanning force microscopy. Langmuir 18, 5448–5456 (2002)

    CAS  Google Scholar 

  8. Barattin, R., Voyer, N.: Chemical modifications of AFM tips for the study of molecular recognition events. Chem. Commun. 13, 513–1532 (2008)

    Google Scholar 

  9. Hu, X., Martini, A.: Atomistic simulation of the effect of roughness on nanoscale wear. Comput. Mater. Sci. 102, 208–212 (2015)

    CAS  Google Scholar 

  10. Noy, A., Vezenov, D.V., Lieber, C.M.: Chemical force microscopy. Ann. Rev. Mater. Sci. 27, 381–421 (1997)

    CAS  Google Scholar 

  11. Mikulski, P.T., Herman, L.A., Harrison, J.A.: Odd and even model self-assembled monolayers: links between friction and structure. Langmuir 21, 12197–12206 (2005)

    CAS  Google Scholar 

  12. Shaporenko, A., Brunnbauer, M., Terfort, A., Grunze, M., Zharnikov, M.: Structural forces in self-assembled monolayers: terphenyl-substituted alkanethiols on noble metal substrates. J. Phys. Chem. B 108, 14462–14469 (2004)

    CAS  Google Scholar 

  13. Ramin, L., Jabbarzadeh, A.: Frictional properties of two alkanethiol self assembled monolayers in sliding contact: odd-even effects. J. Chem. Phys. 137, 174706 (2012)

    Google Scholar 

  14. Tao, F., Bernasek, S.L.: Understanding odd–even effects in organic self-assembled monolayers. Chem. Rev. 107, 1408–1453 (2007)

    CAS  Google Scholar 

  15. Ramin, L., Jabbarzadeh, A.: Effect of water on structural and frictional properties of self assembled monolayers. Langmuir 29, 13367–13378 (2013)

    CAS  Google Scholar 

  16. Prathima, N., Harini, M., Rai, N., Chandrashekara, R., Ayappa, K., Sampath, S., Biswas, S.: Thermal study of accumulation of conformational disorders in the self-assembled monolayers of C8 and C18 alkanethiols on the Au (111) surface. Langmuir 21, 2364–2374 (2005)

    CAS  Google Scholar 

  17. Leng, Y., Jiang, S.: Atomic indentation and friction of self-assembled monolayers by hybrid molecular simulations. J. Chem. Phys. 113, 8800–8806 (2000)

    CAS  Google Scholar 

  18. Brewer, N.J., Foster, T.T., Leggett, G.J., Alexander, M.R., McAlpine, E.: Comparative investigations of the packing and ambient stability of self-assembled monolayers of alkanethiols on gold and silver by friction force microscopy. J. Phys. Chem. B 108, 4723–4728 (2004)

    CAS  Google Scholar 

  19. Li, L., Chen, S., Jiang, S.: Nanoscale frictional properties of mixed alkanethiol self-assembled monolayers on Au (111) by scanning force microscopy: humidity effect. Langmuir 19, 666–671 (2003)

    CAS  Google Scholar 

  20. Leng, Y., Jiang, S.: Dynamic simulations of adhesion and friction in chemical force microscopy. J. Am. Chem. Soc. 124, 11764–11770 (2002)

    CAS  Google Scholar 

  21. Noy, A., Sanders, C.H., Vezenov, D.V., Wong, S.S., Lieber, C.M.: Chemically-sensitive imaging in tapping mode by chemical force microscopy: relationship between phase lag and adhesion. Langmuir 14, 1508–1511 (1998)

    CAS  Google Scholar 

  22. Clear, S.C., Nealey, P.F.: Chemical force microscopy study of adhesion and friction between surfaces functionalized with self-assembled monolayers and immersed in solvents. J. Colloid Interface Sci. 213, 238–250 (1999)

    CAS  Google Scholar 

  23. Fujihira, M., Tani, Y., Furugori, M., Akiba, U., Okabe, Y.: Chemical force microscopy of self-assembled monolayers on sputtered gold films patterned by phase separation. Ultramicroscopy 86, 63–73 (2001)

    CAS  Google Scholar 

  24. López-Santos, C., Yubero, F., Cotrino, J., González-Elipe, A.: Lateral and in-depth distribution of functional groups on diamond-like carbon after oxygen plasma treatments. Diamond Relat. Mater. 20, 49–56 (2011)

    Google Scholar 

  25. Noy, A., Frisbie, C.D., Rozsnyai, L.F., Wrighton, M.S., Lieber, C.M.: Chemical force microscopy: exploiting chemically-modified tips to quantify adhesion, friction, and functional group distributions in molecular assemblies. J. Am. Chem. Soc. 117, 7943–7951 (1995)

    CAS  Google Scholar 

  26. Wong, S.S., Woolley, A.T., Joselevich, E., Cheung, C.L., Lieber, C.M.: Covalently-functionalized single-walled carbon nanotube probe tips for chemical force microscopy. J. Am. Chem. Soc. 120, 8557–8558 (1998)

    CAS  Google Scholar 

  27. Takano, H., Kenseth, J.R., Wong, S.-S., O’Brie, J.C., Porter, M.D.: Chemical and biochemical analysis using scanning force microscopy. Chem. Rev. 99, 2845–2890 (1999)

    CAS  Google Scholar 

  28. van der Vegte, E.W., Hadziioannou, G.: Scanning force microscopy with chemical specificity: an extensive study of chemically specific tip- surface interactions and the chemical imaging of surface functional groups. Langmuir 13, 4357–4368 (1997)

    Google Scholar 

  29. Te Riet, J., Smit, T., Gerritsen, J.W., Cambi, A., Elemans, J.A., Figdor, C.G., Speller, S.: Molecular friction as a tool to identify functionalized alkanethiols. Langmuir 26, 6357–6366 (2010)

    Google Scholar 

  30. Wilbur, J.L., Biebuyck, H.A., MacDonald, J.C., Whitesides, G.M.: Scanning force microscopies can image patterned self-assembled monolayers. Langmuir 11, 825–831 (1995)

    CAS  Google Scholar 

  31. Tocha, E., Schönherr, H., Vancso, G.J.: Quantitative nanotribology by AFM: a novel universal calibration platform. Langmuir 22, 2340–2350 (2006)

    CAS  Google Scholar 

  32. Alsteens, D., Dague, E., Rouxhet, P.G., Baulard, A.R., Dufrêne, Y.F.: Direct measurement of hydrophobic forces on cell surfaces using AFM. Langmuir 23, 11977–11979 (2007)

    CAS  Google Scholar 

  33. Vezenov, D.V., Noy, A., Rozsnyai, L.F., Lieber, C.M.: Force titrations and ionization state sensitive imaging of functional groups in aqueous solutions by chemical force microscopy. J. Am. Chem. Soc. 119, 2006–2015 (1997)

    Google Scholar 

  34. Chong, K.S., Sun, S., Leggett, G.J.: Measurement of the kinetics of photo-oxidation of self-assembled monolayers using friction force microscopy. Langmuir 21, 3903–3909 (2005)

    CAS  Google Scholar 

  35. Zhang, L., Leng, Y., Jiang, S.: Tip-based hybrid simulation study of frictional properties of self-assembled monolayers: effects of chain length, terminal group, scan direction, and scan velocity. Langmuir 19, 9742–9747 (2003)

    CAS  Google Scholar 

  36. Beake, B., Leggett, G.: Friction and adhesion of mixed self-assembled monolayers studied by chemical force microscopy. Phys. Chem. Chem. Phys. 1, 3345–3350 (1999)

    CAS  Google Scholar 

  37. Liu, L.: Measurements of friction and adhesion for alkyl monolayers on Si (111) by scanning force microscopy. Langmuir 18, 5448–5456 (2002)

    Google Scholar 

  38. Colburn, T.J., Leggett, G.J.: Influence of solvent environment and tip chemistry on the contact mechanics of tip-sample interactions in friction force microscopy of self-assembled monolayers of mercaptoundecanoic acid and dodecanethiol. Langmuir 23, 4959–4964 (2007)

    CAS  Google Scholar 

  39. Jiang, S.: Molecular simulation studies of self-assembled monolayers of alkanethiols on Au (111). Mol. Phys. 100, 2261–2275 (2002)

    CAS  Google Scholar 

  40. Zhang, L., Jiang, S.: Molecular simulation study of nanoscale friction for alkyl monolayers on Si (111). J. Chem. Phys. 117, 1804–1811 (2002)

    CAS  Google Scholar 

  41. Zhang, L., Jiang, S.: Molecular simulation study of nanoscale friction between alkyl monolayers on Si (111) immersed in solvents. J. Chem. Phys. 119, 765–770 (2003)

    CAS  Google Scholar 

  42. Clavilier, J., Faure, R., Guinet, G., Durand, R.: Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the \(\{\)111\(\}\) and \(\{\)110\(\}\) planes. J. Electroanal. Chem. Interfac. Electrochem. 107, 205–209 (1980)

    CAS  Google Scholar 

  43. Fukuma, T., Kimura, M., Kobayashi, K., Matsushige, K., Yamada, H.: Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy. Rev. Sci. Instrum. 76, 053704 (2005)

    Google Scholar 

  44. Horcas, I., Fernández, R., Gomez-Rodriguez, J., Colchero, J., Gómez-Herrero, J., Baro, A.: WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007)

    CAS  Google Scholar 

  45. Ghorai, P.K., Glotzer, S.C.: Molecular dynamics simulation study of self-assembled monolayers of alkanethiol surfactants on spherical gold nanoparticles. J. Phys. Chem. C 111, 15857–15862 (2007)

    CAS  Google Scholar 

  46. Hinterwirth, H., Kappel, S., Waitz, T., Prohaska, T., Lindner, W., Lammerhofer, M.: Quantifying thiol ligand density of self-assembled monolayers on gold nanoparticles by inductively coupled plasma-mass spectrometry. ACS Nano 7, 1129–1136 (2013)

    CAS  Google Scholar 

  47. Majumdar, S., Sierra-Suarez, J.A., Schiffres, S.N., Ong, W.-L., Higgs III, C.F., McGaughey, A.J., Malen, J.A.: Vibrational mismatch of metal leads controls thermal conductance of self-assembled monolayer junctions. Nano Lett. 15, 2985–2991 (2015)

    CAS  Google Scholar 

  48. Ong, W.-L., Majumdar, S., Malen, J.A., McGaughey, A.J.: Coupling of organic and inorganic vibrational states and their thermal transport in nanocrystal arrays. J. Phys. Chem. C 118, 7288–7295 (2014)

    CAS  Google Scholar 

  49. Hautman, J., Bareman, J.P., Mar, W., Klein, M.L.: Molecular dynamics investigations of self-assembled monolayers. J. Chem. Soc. Faraday Trans. 87, 2031–2037 (1991)

    CAS  Google Scholar 

  50. Grochola, G., Russo, S.P., Snook, I.K.: On fitting a gold embedded atom method potential using the force matching method. J. Chem. Phys. 123, 204719 (2005)

    Google Scholar 

  51. Stuart, S.J., Tutein, A.B., Harrison, J.A.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472–6486 (2000)

    CAS  Google Scholar 

  52. Berendsen, H., Grigera, J., Straatsma, T.: The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987)

    CAS  Google Scholar 

  53. Mahaffy, R., Bhatia, R., Garrison, B.J.: Diffusion of a butanethiolate molecule on a Au \(\{\)111\(\}\) surface. J. Phys. Chem. B 101, 771–773 (1997)

    CAS  Google Scholar 

  54. Sung, I.-H., Kim, D.-E.: Molecular dynamics simulation study of the nano-wear characteristics of alkanethiol self-assembled monolayers. Appl. Phys. A 81, 109–114 (2005)

    CAS  Google Scholar 

  55. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, Oxford (2017)

    Google Scholar 

  56. Hu, X., Nanney, W., Umeda, K., Ye, T., Martini, A.: Combined experimental and simulation study of amplitude modulation atomic force microscopy measurements of self-assembled monolayers in water. Langmuir 34, 9627–9633 (2018)

    CAS  Google Scholar 

  57. Hu, X., Yang, Q., Ye, T., Martini, A.: Simulation of dynamic atomic force microscopy measurements of hydrophilic self-assembled monolayers in water. Langmuir 36, 2240–2246 (2020)

    CAS  Google Scholar 

  58. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    CAS  Google Scholar 

  59. Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2009)

    Google Scholar 

  60. Takami, T., Delamarche, E., Michel, B., Gerber, C., Wolf, H., Ringsdorf, H.: Recognition of individual tail groups in self-assembled monolayers. Langmuir 11, 3876–3881 (1995)

    CAS  Google Scholar 

  61. Schönherr, H., Hruska, Z., Vancso, G.J.: Surface characterization of oxyfluorinated isotactic polypropylene films: scanning force microscopy with chemically modified probes and contact angle measurements. Macromolecules 31, 3679–3685 (1998)

    Google Scholar 

  62. Mate, C.M., Carpick, R.W.: Tribology on the small scale: a modern textbook on friction, lubrication, and wear, 2nd edn. Oxford University Press, Oxford (2019)

    Google Scholar 

  63. Luzar, A., Chandler, D.: Structure and hydrogen bond dynamics of water-dimethyl sulfoxide mixtures by computer simulations. J. Chem. Phys. 98, 8160–8173 (1993)

    CAS  Google Scholar 

  64. Guardia, E., Martí, J., García-Tarrés, L., Laria, D.: A molecular dynamics simulation study of hydrogen bonding in aqueous ionic solutions. J. Mol. Liq. 117, 63–67 (2005)

    CAS  Google Scholar 

  65. Rapaport, D.: Hydrogen bonds in water: network organization and lifetimes. Mol. Phys. 50, 1151–1162 (1983)

    CAS  Google Scholar 

  66. Mizan, T.I., Savage, P.E., Ziff, R.M.: Temperature dependence of hydrogen bonding in supercritical water. J. Phys. Chem. 100, 403–408 (1996)

    CAS  Google Scholar 

  67. Starr, F.W., Nielsen, J.K., Stanley, H.E.: Fast and slow dynamics of hydrogen bonds in liquid water. Phys. Rev. Lett. 82, 2294 (1999)

    CAS  Google Scholar 

  68. Langmuir, I.: The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 38, 2221–2295 (1916)

    CAS  Google Scholar 

  69. Langmuir, I.: The constitution and fundamental properties of solids and liquids. II. Liquids. J. Am. Chem. Soc. 39, 1848–1906 (1917)

    CAS  Google Scholar 

  70. Akrami, S., Nakayachi, H., Watanabe-Nakayama, T., Asakawa, H., Fukuma, T.: Significant improvements in stability and reproducibility of atomic-scale atomic force microscopy in liquid. Nanotechnology 25, 455701 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation through Grant #CHE 1808213 and the NASA Merced nAnomaterials Center for Energy and Sensing (MACES) through the support of the National Aeronautics and Space Administration (NASA) Grant No. NNX15AQ01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashlie Martini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Nanney, W., Hu, X. et al. Nanoscale Friction of Hydrophilic and Hydrophobic Self-Assembled Monolayers in Water. Tribol Lett 68, 63 (2020). https://doi.org/10.1007/s11249-020-01301-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-020-01301-0

Keywords

Navigation