Skip to main content
Log in

Modeling the Adhesive Contact of Rough Soft Media with an Advanced Asperity Model

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Adhesive interactions strongly characterize the contact mechanics of soft bodies as they lead to large elastic deformations and contact instabilities. In this paper, we extend the Interacting and Coalescing Hertzian Asperities (ICHA) model to the case of adhesive contact. Adhesion is modeled according to an improved version of the Johnson, Kendall & Roberts (JKR) theory, in which jump-in contact instabilities are conveniently considered as well as the lateral interaction of the asperities and the coalescence of merging contact spots. Results obtained on complex fractal geometries with several length scales are accurate as demonstrated by the comparison with fully numerical simulations and experimental investigations taken from the literature. Also, the model quite well captures the distributions of the contact stresses, gaps, and contact spots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim, S.H., Asay, D.B., Dugger, M.T.: Nanotribology and MEMS. Nano Today 2(5), 22–29 (2007)

    Article  Google Scholar 

  2. Lin, P.C., Vajpayee, S., Jagota, A., Hui, C.Y., Yang, S.: Mechanically tunable dry adhesive from wrinkled elastomers. Soft Matter 4(9), 1830–1835 (2008)

    Article  CAS  Google Scholar 

  3. Morent, R., De Geyter, N., Axisa, F., De Smet, N., Gengembre, L., De Leersnyder, E., Payen, E.: Adhesion enhancement by a dielectric barrier discharge of PDMS used for flexible and stretchable electronics. J. Phys. D 40(23), 7392 (2007)

    Article  CAS  Google Scholar 

  4. Shah, G.J., Sitti, M.: Modeling and design of biomimetic adhesives inspired by gecko foot-hairs. In: 2004 IEEE International Conference on Robotics and Biomimetics, IEEE, pp. 873–878 (2004)

  5. Shi, J., Votruba, A.R., Farokhzad, O.C., Langer, R.: Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 10(9), 3223–3230 (2010)

    Article  CAS  Google Scholar 

  6. Afferrante, L., Putignano, C., Menga, N., Carbone, G.: Friction in rough contacts of linear viscoelastic surfaces with anisotropic statistical properties. Eur. Phys. J. E 42, 80 (2019). https://doi.org/10.1140/epje/i2019-11844-5

    Article  CAS  Google Scholar 

  7. Menga, N., Afferrante, L., Carbone, G.: Effect of thickness and boundary conditions on the behavior of viscoelastic layers in sliding contact with wavy profiles. J. Mech. Phys. Solids 95, 517–529 (2016). https://doi.org/10.1016/j.jmps.2016.06.009

    Article  Google Scholar 

  8. Menga, N., Afferrante, L., Demelio, G., Carbone, G.: Rough contact of sliding viscoelastic layers: numerical calculations and theoretical predictions. Tribol. Int. 122, 67–75 (2018). https://doi.org/10.1016/j.triboint.2018.02.012

    Article  Google Scholar 

  9. Quintanilla, M.A.S., Goddard, D.T.: Lateral Force Microscopy with micrometer-sized particles: effect of wear on adhesion and friction. Wear 268(1), 277–286 (2010). https://doi.org/10.1016/j.wear.2009.08.019

    Article  CAS  Google Scholar 

  10. Menga, N., Afferrante, L., Carbone, G.: Adhesive and adhesiveless contact mechanics of elastic layers on slightly wavy rigid substrates. Int. J. Solids Struct. 88, 101–109 (2016). https://doi.org/10.1016/j.ijsolstr.2016.03.016

    Article  Google Scholar 

  11. Persson, B.N.J., Albohr, O., Tartaglino, U., Volokitin, A.I., Tosatti, E.: On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys. 17(1), R1 (2004)

    Google Scholar 

  12. Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. A 324(1558), 301–313 (1971). https://doi.org/10.1098/rspa.1971.0141

    Article  CAS  Google Scholar 

  13. Fuller, K.N.G., Tabor, D.: The effect of surface roughness on the adhesion of elastic solids. Proc. R. Soc. A 345(1642), 327–342 (1975). https://doi.org/10.1098/rspa.1975.0138

    Article  Google Scholar 

  14. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. A 295(1442), 300–319 (1966). https://doi.org/10.1098/rspa.1966.0242

    Article  CAS  Google Scholar 

  15. Persson, B.N.J.: Adhesion between an elastic body and a randomly rough hard surface. Eur. Phys. J. E 8, 385–401 (2002). https://doi.org/10.1140/epje/i2002-10025-1

    Article  CAS  Google Scholar 

  16. Persson, B.N.J., Tosatti, E.: The effect of surface roughness on the adhesion of elastic solids. J. Chem. Phys. 115(12), 5597–5610 (2001). https://doi.org/10.1063/1.1398300

    Article  CAS  Google Scholar 

  17. Muser, M.H., Dapp, W.B., Bugnicourt, R., Sainsot, P., Lesaffre, N., Lubrecht, T.A., Persson, B.N.J., Harris, K., Bennett, A., Schulze, K., Rohde, S., Ifju, P., Sawyer, W.G., Angelini, T., Esfahani, H.A., Kadkhodaei, M., Akbarzadeh, S., Wu, J.-J., Vorlaufer, G., Vernes, A., Solhjoo, S., Vakis, A.I., Jackson, R.L., Xu, Y., Streator, J., Rostami, A., Dini, D., Medina, S., Carbone, G., Bottiglione, F., Afferrante, L., Monti, J., Pastewka, L., Robbins, M.O., Greenwood, J.A.: Meeting the contact-mechanics challenge. Tribol. Lett. 65, 118 (2017)

    Article  Google Scholar 

  18. Campañá, C., Müser, M.H.: Practical green’s function approach to the simulation of elastic semi-infinite solids. Phys. Rev. B 74, 075420 (2006)

    Article  Google Scholar 

  19. Prodanov, N., Dapp, W.B., Müser, M.H.: On the contact area and mean gap of rough, elastic contacts: Dimensional analysis, numerical corrections and reference data. Tribol. Lett. 53, 433–448 (2014)

    Article  Google Scholar 

  20. Müser, M.H.: A dimensionless measure for adhesion and effects of the range of adhesion in contacts of nominally flat surfaces. Tribol. Int. 100, 41–47 (2016). https://doi.org/10.1016/j.triboint.2015.11.010

    Article  Google Scholar 

  21. Rey, V., Anciaux, G., Molinari, J.F.: Normal adhesive contact on rough surfaces: efficient algorithm for FFT-based BEM resolution. Comput. Mech. 60(1), 69–81 (2017). https://doi.org/10.1007/s00466-017-1392-5

    Article  Google Scholar 

  22. Afferrante, L., Carbone, G., Demelio, G.: Interacting and coalescing Hertzian asperities: a new multiasperity contact model. Wear 278–279, 28–33 (2012). https://doi.org/10.1016/j.wear.2011.12.013

    Article  CAS  Google Scholar 

  23. Afferrante, L., Bottiglione, F., Putignano, C., Persson, B.N.J., Carbone, G.: Elastic contact mechanics of randomly rough surfaces: an assessment of advanced asperity models and Persson’s theory. Tribol. Lett. 66, 75 (2018). https://doi.org/10.1007/s11249-018-1026-x

    Article  Google Scholar 

  24. Ciavarella, M., Greenwood, J.A., Barber, J.R.: Effect of Tabor parameter on hysteresis losses during adhesive contact. J. Mechan. Phys. Solids 98, 236–244 (2017)

    Article  Google Scholar 

  25. Wu, J.J.: The jump-to-contact distance in atomic force microscopy measurement. J. Adhes. 86(11), 1071–1085 (2010)

    Article  CAS  Google Scholar 

  26. Greenwood, J.A.: Adhesion of elastic spheres. Proc. R. Soc. A 453(1961), 1277–1297 (1997). https://doi.org/10.1098/rspa.1997.0070

    Article  CAS  Google Scholar 

  27. Tabor, D.: Surface forces and surface interactions. J. Colloid Interface Sci. 58(1), 2–13 (1977). https://doi.org/10.1016/0021-9797(77)90366-6

    Article  CAS  Google Scholar 

  28. Violano, G., Afferrante, L.: On DMT methods to calculate adhesion in rough contacts. Tribol. Int. 130, 36–42 (2019). https://doi.org/10.1016/j.triboint.2018.09.004

    Article  Google Scholar 

  29. Violano, G., Afferrante, L.: Contact of rough surfaces: modeling adhesion in advanced multiasperity models. Proc. Inst. Mech. Eng. J (2019). https://doi.org/10.1177/1350650119838669

    Article  Google Scholar 

  30. Violano, G., Demelio, G.P., Afferrante, L.: On the DMT adhesion theory: from the first studies to the modern applications in rough contacts. Procedia Struct. Integr. 12, 58–70 (2018). https://doi.org/10.1016/j.prostr.2018.11.106

    Article  Google Scholar 

  31. Dapp, W.B., Müser, M.H.: Contact mechanics of and Reynolds flow through saddle points (on the coalescence of contact patches and the leakage rate through near-critical constrictions). EPL 109, 44001 (2015). https://doi.org/10.1209/0295-5075/109/44001

    Article  CAS  Google Scholar 

  32. Persson, B.: On the fractal dimension of rough surfaces. In: Fundamentals of Friction and Wear on the Nanoscale, pp. 235–248. Springer, Cham (2015)

    Google Scholar 

  33. Putignano, C., Afferrante, L., Carbone, G., Demelio, G.: A new efficient numerical method for contact mechanics of rough surfaces. Int. J. Solids Struct. 49(2), 338–343 (2012). https://doi.org/10.1016/j.ijsolstr.2011.10.009

    Article  Google Scholar 

  34. Putignano, C., Afferrante, L., Carbone, G., Demelio, G.P.: A multiscale analysis of elastic contacts and percolation threshold for numerically generated and real rough surfaces. Tribol. Int. 64, 148–154 (2013). https://doi.org/10.1016/j.triboint.2013.03.010

    Article  Google Scholar 

  35. Bennett, A.I., Harris, K.L., Schulze, K.D., Urueña, J.M., McGhee, A.J., Pitenis, A.A., Müser, M.H., Angelini, T.E., Sawyer, W.G.: Contact measurements of randomly rough surfaces. Tribol. Lett. 65, 134 (2017). https://doi.org/10.1007/s11249-017-0918-5

    Article  Google Scholar 

  36. McGhee, A.J., Pitenis, A.A., Bennett, A.I., Harris, K.L., Schulze, K.D., Urueña, J.M., Sawyer, W.G.: Contact and deformation of randomly rough surfaces with varying root-mean-square gradient. Tribol. Lett. 65(4), 157 (2017). https://doi.org/10.1007/s11249-017-0942-5

    Article  Google Scholar 

  37. Violano, G., Demelio, G.P., Afferrante, L.: A note on the effect of surface topography on adhesion of hard elastic rough bodies with low surface energy. J. Mech. Behav. Mater. (2019). https://doi.org/10.1515/jmbm-2019-0002

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Italian Ministry of Education, University and Research (MIUR) under the program “Departments of Excellence” (L.232/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Afferrante.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Violano, G., Afferrante, L. Modeling the Adhesive Contact of Rough Soft Media with an Advanced Asperity Model. Tribol Lett 67, 119 (2019). https://doi.org/10.1007/s11249-019-1232-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-019-1232-1

Keywords

Navigation